版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1一元二次方程配方后可化为( )ABCD2将抛物线y=-2x2
2、向左平移3个单位,再向下平移4个单位,所得抛物线为()ABCD3如果,那么下列比例式中正确的是( )ABCD4若抛物线y(xm)2(m1)的顶点在第一象限,则m的取值范围为()Am1Bm0Cm1D1m05如图的的网格图,A、B、C、D、O都在格点上,点O是( )A的外心B的外心C的内心D的内心6计算的结果等于( )A-6B6C-9D97若. 则下列式子正确的是( )ABCD8某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x根据题意列方程,则下列方程正确的是( )ABCD9下列对于二次函数yx2+x图象的描述中,正确的
3、是( )A开口向上B对称轴是y轴C有最低点D在对称轴右侧的部分从左往右是下降的10关于2,6,1,10,6这组数据,下列说法正确的是( )A这组数据的平均数是6B这组数据的中位数是1C这组数据的众数是6D这组数据的方差是10.2二、填空题(每小题3分,共24分)11若关于的一元二次方程有实数根,则的取值范围是_.12已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间 (单位:秒)满足下面的函数关系: 那么测试实验中该汽车从开始刹车到完全停止,共行驶了_米13如图,在RtABC中,C=90,点D为BC上一点,AD=BD,CD=1,AC=,则B的度数为_ 14
4、用配方法解方程时,可配方为,其中_15若,则=_16如图,P1是反比例函数(k0)在第一象限图象上的一点,点A1的坐标为(2,0)若P1OA1与P2A1A2均为等边三角形,则A2点的坐标为_17某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_米18如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像AB是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_cm的地方三、解答题(共66分)19(10分)已知:如图,点P是一个反比例函数的图象与正比例函数y2x的图象的公共点
5、,PQ垂直于x轴,垂足Q的坐标为(2,0)(1)求这个反比例函数的解析式;(2)如果点M在这个反比例函数的图象上,且MPQ的面积为6,求点M的坐标20(6分)(1)2y2+4yy+2(用因式分解法)(2)x27x180(用公式法)(3)4x28x30(用配方法)21(6分)2019年,中央全面落实“稳房价”的长效管控机制,重庆房市较上一年大幅降温,11月,LH地产共推出了大平层和小三居两种房型共80套,其中大平层每套面积180平方米,单价18万元/平方米,小三居每套面积120平方米,单价15万元/平方米(1)LH地产11月的销售总额为18720万元,问11月要推出多少套大平层房型?(2)201
6、9年12月,中央经济会议上重申“房子是拿来住的,不是拿来炒的”,重庆房市成功稳定并略有回落为年底清盘促销,LH地产调整营销方案,12月推出两种房型的总数量仍为80套,并将大平层的单价在原有基础上每平方米下调万元(m0),将小三居的单价在原有基础上每平方米下调万元,这样大平层的销量较(1)中11月的销量上涨了7m套,且推出的房屋全部售罄,结果12月的销售总额恰好与(1)中I1月的销售总额相等求出m的值22(8分)如图,矩形ABCD中,ACB=30,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分
7、别为E,F(1)当PEAB,PFBC时,如图1,则的值为 ;(2)现将三角板绕点P逆时针旋转(060)角,如图2,求的值;(3)在(2)的基础上继续旋转,当6090,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论23(8分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB4,BC1若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动(1)当OAD30时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直
8、接写出最大值,并求此时cosOAD的值24(8分)如图,为正方形对角线上一点,以为圆心,长为半径的与相切于点. (1)求证:与相切. (2)若正方形的边长为1,求半径的长.25(10分)某校要求九年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解九年级学生参加球类活动的整体情况,现以九年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:九年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6486根据图中提供的信息,解答下列问题:(1)a,b;(2)该校九年级学生共有
9、600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的4位同学中,有2位男同学(A,B)和2位女同学(C,D),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率26(10分)如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG= 2BE设BE的长为x米,改造后苗圃AEFG的面积为y平方米(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?参考答案
10、一、选择题(每小题3分,共30分)1、B【分析】根据一元二次方程配方法即可得到答案.【详解】解:x2+4x=3 x2+4x+4=3+4(x+2)2=7故选B【点睛】此题主要考查了解一元二次方程的配方法,熟练掌握一元二次方程各种解法是解题的关键.2、B【解析】根据“左加右减、上加下减”的原则进行解答即可【详解】解:把抛物线y=-2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是y=-2(x+3)2-4, 故选:B【点睛】本题主要考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键3、C【分析】根据比例的性质,若,则判断即可.【详解】解: 故选:C.【点睛】本题
11、主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.4、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组【详解】顶点坐标(m,m+1)在第一象限,则有 解得:m0,故选B.考点:二次函数的性质5、B【分析】连接OA、OB、OC、OD,设网格的边长为1,利用勾股定理分别求出OA、OB、OC、OD的长,根据O点与三角形的顶点的距离即可得答案.【详解】连接OA、OB、OC、OD,设网格的边长为1,OA=,OB=,OC=,OD=,OA=OB=OC=,O为ABC的外心,故选B.【点睛】本题考查勾股定理的应用
12、,熟练掌握三角形的外心和内心的定义是解题关键.6、D【分析】根据有理数乘方运算的法则计算即可【详解】解:,故选:D【点睛】本题考查了有理数的乘方,掌握运算法则是解题的关键7、A【分析】直接利用比例的性质分别判断即可得出答案【详解】2x-7y=0,2x=7yA,则2x=7y,故此选项正确;B,则xy=14,故此选项错误;C,则2y=7x,故此选项错误;D,则7x=2y,故此选项错误故选A【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键8、D【分析】分别表示出5月,6月的营业额进而得出等式即可【详解】解:设该公司5、6两月的营业额的月平均增长率为x根据题意列方程得:故选D【点睛】考查了由
13、实际问题抽象出一元二次方程,正确理解题意是解题关键9、D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题【详解】解:二次函数yx2+x(x)2+,a1,该函数的图象开口向下,故选项A错误;对称轴是直线x,故选项B错误;当x时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键10、C【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方
14、差,再逐项判定即可【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6;平均数为:;方差为:故选:C【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键二、填空题(每小题3分,共24分)11、【分析】对于一元二次方程,当时有实数根,由此可得m的取值范围.【详解】解:由题意可得,解得.故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式是解题的关键.12、1【分析】此题利用配方法求二次函数最值的方法求解即可;【详解】,汽车刹车后直到停下来前进了1m故答案是1【点睛】本题主要考查了二次函数最
15、值应用,准确化简计算是解题的关键13、30【分析】根据勾股定理求得AD,再根据三角函数值分析计算【详解】C=90,CD=1,AC=,而AD=BD,BD=2,在RtABC中,AC=,BC=BD+CD=3,tanB=,B=30,故填:30【点睛】本题考查勾股定理,特殊角的三角函数值,熟练掌握特殊角的三角函数值是关键14、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.15、【分析】把所求比例形式进行变形,然后整体代入求值即可【详解】,;故答案为【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解
16、题的关键16、 (2,0)【分析】由于P1OA1为等边三角形,作P1COA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y (k0)图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2DA1A2,垂足为D设A1Da,由于P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标【详解】作P1COA1,垂足为C,P1OA1为边长是2的等边三角形,OC1,P1C2,P1(1,)代入y,得k,所以反比例函数的解析式为y作P2DA1A2,垂足为D设A1Da
17、,则OD2+a,P2Da,P2(2+a,a)P2(2+a,a)在反比例函数的图象上,代入y,得(2+a) a,化简得a2+2a10解得:a1a0,a1+A1A22+2,OA2OA1+A1A22,所以点A2的坐标为(2,0)故答案为:(2,0)【点睛】此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点此题难度稍大,综合性比较强,注意对各个知识点的灵活应用17、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案【详解】解:根据相同时刻的物高与影长成比例设树的高度为,则,解得:故答案为:1【点睛】此题考查相似三角形的应用
18、,解题关键在于掌握其性质定义18、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:ABAB,ABOABO,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.三、解答题(共66分)19、(1)y;(2)M(5,)或(1,8)【解析】(1)由Q(2,0),推出P(2,-4),利用待定系数法即可解决问题;(2)根据三角形的面积公式求出MN的长,分两种情形求出点M的坐标即可.【详解】(1)把x2代入y2x得 y4P(2,4),设反比例函数解析式y(k0),P在此图象上k2(4)8,y;(2)P(2,4),Q(2,0)PQ4,过M作MNPQ于N则
19、 PQMN6,MN3,设M(x,),则 x2+35或x231当x5时,当x1时,1,M(5,)或(1,8)故答案为:(1)y;(2)M(5,)或(1,8)【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是用待定系数法求反比例函数的解析式,利用数形结合的思想表示出三角形的面积也是解答本题的关键.20、(1)y12,y2;(2)x19,x22;(3)x11+,x21【分析】(1)先变形为2y(y+2)(y+2)0,然后利用因式分解法解方程;(2)先计算出判别式的值,然后利用求根公式法解方程;(3)先把二次项系数化为1,再两边加上一次项系数一半的平方,配方法得到(x1)2,然后利用直接开平
20、方法解方程【详解】解:(1)2y(y+2)(y+2)0,(y+2)(2y1)0,y+20或2y10,所以y12,y2;(2)a1,b7,c18,(7)24(18)121,x,x19,x22;(3)x22x,x22x+1+1,(x1)2,x1,x11+,x21【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了配方法和公式法21、(1)30 (2)2【分析】(1)设推出大平层x套,小三居y套,根据题意列出方程求解即可;(2)由题意得,12月大平层推出套,单价为,12月小三居推出套,单价为,根据题意列出方
21、程求解即可【详解】(1)解:设推出大平层x套,小三居y套,由题意得故11月要推出30套大平层房型;(2)解:由题意得,12月大平层推出套,单价为,12月小三居推出套,单价为解得或【点睛】本题考查了一元一次方程组和一元二次方程的实际应用,掌握解一元一次方程组和一元二次方程的方法是解题的关键22、(1);(2);(3)变化.证明见解析.【分析】(1)证明APEPCF,得PE=CF;在RtPCF中,解直角三角形求得的值即可;(2)如答图1所示,作辅助线,构造直角三角形,证明PMEPNF,并利用(1)的结论,求得的值;(3)如答图2所示,作辅助线,构造直角三角形,首先证明APMPCN,求得;然后证明P
22、MEPNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.【详解】(1)矩形ABCD,ABBC,PA=PC.PEAB,BCAB,PEBC.APE=PCF.PFBC,ABBC,PFAB.PAE=CPF.在APE与PCF中,PAE=CPF,PA=PC,APE=PCF,APEPCF(ASA).PE=CF.在RtPCF中,;(2)如答图1,过点P作PMAB于点M,PNBC于点N,则PMPN.PMPN,PEPF,EPM=FPN.又PME=PNF=90,PMEPNF.由(1)知,.(3)变化.证明如下:如答图2,过点P作PMAB于点M,PNBC于点N,则PMPN,PMBC,PNAB.PMBC,P
23、NAB,APM=PCN,PAM=CPN.APMPCN.,得CN=2PM.在RtPCN中,.PMPN,PEPF,EPM=FPN.又PME=PNF=90,PMEPNF.的值发生变化.23、 (1)点C的坐标为(2,3+2);(2)OA3;(3)OC的最大值为8,cosOAD【分析】(1)作CEy轴,先证CDEOAD30得CECD2,DE,再由OAD30知ODAD3,从而得出点C坐标;(2)先求出SDCM1,结合S四边形OMCD知SODM,SOAD9,设OAx、ODy,据此知x2+y231,xy9,得出x2+y22xy,即xy,代入x2+y231求得x的值,从而得出答案;(3)由M为AD的中点,知O
24、M3,CM5,由OCOM+CM8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ONAD,证CMDOMN得,据此求得MN,ON,ANAMMN,再由OA及cosOAD可得答案【详解】(1)如图1,过点C作CEy轴于点E,矩形ABCD中,CDAD,CDE+ADO90,又OAD+ADO90,CDEOAD30,在RtCED中,CECD2,DE2,在RtOAD中,OAD30,ODAD3,点C的坐标为(2,3+2);(2)M为AD的中点,DM3,SDCM1,又S四边形OMCD,SODM,SOAD9,设OAx、ODy,则x2+y231,xy9,x2+y22xy,即xy,
25、将xy代入x2+y231得x218,解得x3(负值舍去),OA3;(3)OC的最大值为8,如图2,M为AD的中点,OM3,CM5,OCOM+CM8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ONAD,垂足为N,CDMONM90,CMDOMN,CMDOMN,即,解得MN,ON,ANAMMN,在RtOAN中,OA,cosOAD【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点24、(1)见解析;(2)【分析】(1)根据正方形的性质可知,AC是角平分线,再根据角平分线的性质进行证明即可;(2)根据正方形的边长求出AC的长,再根据等腰直角三角形的性质得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《体育科研方法》2021-2022学年第一学期期末试卷
- 淮阴师范学院《仪器分析》2022-2023学年第一学期期末试卷
- 淮阴师范学院《乡村地理学》2023-2024学年第一学期期末试卷
- 淮阴师范学院《分析学专题研究》2022-2023学年第一学期期末试卷
- 淮阴工学院《食品分析与感官评定》2023-2024学年第一学期期末试卷
- 淮阴工学院《液压与气压传动1》2021-2022学年第一学期期末试卷
- 五年级诗词大会活动方案
- 天然气开采的社会与经济影响评估考核试卷
- 光学仪器的激光光源选择技术原理与应用考核试卷
- 化学矿石的电极半反应和电池动力学考核试卷
- 2024年国家能源集团公司招聘笔试参考题库含答案解析
- 部编版七年级上册语文基础知识训练及答案一
- 污泥( 废水)运输服务方案(技术方案)
- 如何搞定你的客户-
- 八年级物理上册说课稿:第二章2.1物质的三态 温度的测量
- 职业院校面试题目及答案
- 湖北省鄂东南省级示范高中教育教学改革联盟2023-2024学年高一上学期期中联考政治试题
- 海水淡化处理方案
- 福建省厦门市翔安区2023-2024学年九年级上学期期中英语试题
- 学生对学校满意度评价表
- 化工项目国民经济分析 化工项目技术经济
评论
0/150
提交评论