2023学年黑龙江省哈尔滨市名校数学九年级第一学期期末统考模拟试题含解析_第1页
2023学年黑龙江省哈尔滨市名校数学九年级第一学期期末统考模拟试题含解析_第2页
2023学年黑龙江省哈尔滨市名校数学九年级第一学期期末统考模拟试题含解析_第3页
2023学年黑龙江省哈尔滨市名校数学九年级第一学期期末统考模拟试题含解析_第4页
2023学年黑龙江省哈尔滨市名校数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,是的直径,点在上,则的度数为( )ABCD2下列方程是一元二次方程的是()A2x3y+1B3x+yzCx25x1Dx2+203一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()ABCD4把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长

2、LG交AF于点P,则APG()A141B144C147D1505在一个不透明的盒子里装有个黄色、个蓝色和个红色的小球,它们除颜色外其他都完全相同,将小球摇匀后随机摸出一个球,摸出的小球为红色的概率为( )ABCD6如图,抛物线和直线,当时,的取值范围是( )AB或C或D7在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为( )A2B3C4D68已知RtABC中,C=90,AC=4,BC=6,那么下列各式中,正确的是( )AsinA=BcosA=CtanA=DtanB=9在3、2、1、0、1、2这六个数中,任取两个数,恰好

3、和为1的概率为()ABCD10如图,平面直角坐标系中,P经过三点A(8,0),O(0,0),B(0,6),点D是P上的一动点当点D到弦OB的距离最大时,tanBOD的值是()A2B3C4D5二、填空题(每小题3分,共24分)11如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则OAB的面积是_12如图,ABDE,AE与BD相交于点C若AC4,BC2,CD1,则CE的长为_13等腰三角形的底角为15,腰长为20cm,则此三角形的面积为14如果抛物线y(k2)x2+k的开口向上,那么k的取值范围是_15小球在如图6所示的地板上自由滚动,并随机停留在某块正方

4、形的地砖上,则它停在白色地砖上的概率是_.16如图,AB是O的直径,BC是O的弦若OBC60,则BAC=_17已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_.18用配方法解方程时,可配方为,其中_三、解答题(共66分)19(10分)如图,在ABC中,B=30,C=45,AC=2,求AB和BC20(6分)如图,四边形ABCD内接于O,点E在CB的延长线上,BA平分EBD,AEAB(1)求证:ACAD(2)当,AD6时,求CD的长21(6分)已知关于x的方程x2+(2m+1)x+m(m+1)1(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x1,求代数式m2+

5、m5的值22(8分)如图,ABC中,BAC=120o,以BC为边向外作等边BCD,把ABD绕着D点按顺时针方向旋转60o后到ECD的位置若AB=6,AC=4,求BAD的度数和AD的长. 23(8分)如图,在矩形ABCD中,BC60cm动点P以6cm/s的速度在矩形ABCD的边上沿AD的方向匀速运动,动点Q在矩形ABCD的边上沿ABC的方向匀速运动P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动设运动的时间为t(s),PDQ的面积为S(cm2),S与t的函数图象如图所示(1)AB cm,点Q的运动速度为 cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿C

6、D的垂直平分线向左匀速运动,以点O为圆心的O始终与边AD、BC相切,当点P到达终点D时,运动同时停止当点O在QD上时,求t的值;当PQ与O有公共点时,求t的取值范围24(8分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练(1)用列表法或树形图表示出的所用可能出现的结果;(2)求甲、乙、丙三名学生在同一场地进行训练的概率;(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率25(10分)已知关于的一元二次方程有两个不相等的实数根,.(1

7、)若为正整数,求的值;(2)若,满足,求的值.26(10分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表请根据图中提供的信息,回答下列问题:(1)a的值为 ; (2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率参考答案一、选择题(每小题3分,共30分)1、B【分析】连接AC,根据圆周角定理,分别求出ACB=90,ACD=20,即可求BCD的

8、度数【详解】连接AC,AB为O的直径,ACB=90,AED=20,ACD=AED=20,BCD=ACB+ACD=90+20=110,故选:B【点睛】本题考查的是圆周角定理:直径所对的圆周角为直角;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、C【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1逐一判断即可【详解】解:A、它不是方程,故此选项不符合题意;B、该方程是三元一次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、该方程不是整式方程,故此选项不符合题意;故选:C【点睛】此题主要考查了一元二次方程定

9、义,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为13、B【分析】先由三视图得出圆柱的底面直径和高,然后根据圆柱的体积=底面积高计算即可.【详解】解:由三视图可知圆柱的底面直径为,高为,底面半径为,故选B【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)1806120,(52)180510

10、8,APG(62)18012031082720360216144,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)5、D【分析】让红球的个数除以球的总个数即为所求的概率.【详解】解:盒子中一共有3+2+4=9 个球,红色的球有4个摸出的小球为红色的概率为故选D【点睛】此题主要考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、B【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的的取值范围即可【详解】解:联立,解得,两函数图象交点坐标为,由

11、图可知,时的取值范围是或故选:B【点睛】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便7、C【解析】试题分析:设黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;黄球的个数为1故选C考点:概率公式8、D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可【详解】C90,BC6,AC4,AB,A、sinA,故此选项错误;B、cosA,故此选项错误;C、tanA,故此选项错误;D、tanB,故此选项正确故选:D【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键9、D【分析】画树状图

12、展示所有15种等可能的结果数,找出恰好和为-1的结果数,然后根据概率公式求解【详解】解:画树状图为:共有15种等可能的结果数,其中恰好和为-1的结果数为3,所以任取两个数,恰好和为-1的概率故选:D【点睛】本题考查的是概率的问题,能够用树状图解决简单概率问题是解题的关键.10、B【解析】如图,连接AB,过点P作PEBO,并延长EP交P于点D,求出P的半径,进而结合勾股定理得出答案【详解】解:如图,连接AB,过点P作PEBO,并延长EP交P于点D,此时点D到弦OB的距离最大,A(8,0),B(0,6),AO=8,BO=6,BOA=90,AB=10,则P的半径为5,PEBO,BE=EO=3,PE=

13、4,ED=9,tanBOD=3,故选B【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键二、填空题(每小题3分,共24分)11、2【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(1,1),B(4,1)再过A,B两点分别作ACx轴于C,BDx轴于D,根据反比例函数系数k的几何意义得出SAOC=SBOD=4=1根据S四边形AODB=SAOB+SBOD=SAOC+S梯形ABDC,得出SAOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)CD=(1+1)1=2,从而得出SAOB=2【详解】解:A,B是反比例函数y=在第一

14、象限内的图象上的两点,且A,B两点的横坐标分别是1和4,当x=1时,y=1,即A(1,1),当x=4时,y=1,即B(4,1)如图,过A,B两点分别作ACx轴于C,BDx轴于D,则SAOC=SBOD=4=1S四边形AODB=SAOB+SBOD=SAOC+S梯形ABDC,SAOB=S梯形ABDC,S梯形ABDC=(BD+AC)CD=(1+1)1=2,SAOB=2故答案是:2【点睛】主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|12、1【分析】先证明ABCEDC,然后利用相似比计算CE的长【详解】解:ABDE,

15、ABCEDC,即,CE1故答案为1【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活应用相似三角形相似的性质进行几何计算也考查了解直角三角形13、100【解析】试题分析:先作出图象,根据含30角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解如图,B=C=15CAD=30CD=AC=10三角形的面积考点:本题考查的是三角形外角的性质,含30角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;

16、30角的所对的直角边等于斜边的一半14、k2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k21【详解】因为抛物线y(k2)x2k的开口向上,所以k21,即k2,故答案为k2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型15、【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论【详解】由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=考点:概率.16、30【分析】根据AB是O的直径可得出ACB=90,再根据三角形内角和为180以及OBC=60,即可求出BAC的度数【详解】AB是O的直径,ACB=90,又

17、OBC=60,BAC=180-ACB-ABC=30故答案为:30【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出ACB=90本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90是关键17、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.18、-6【分析】把方程左边配成完全平方,与比较即可.【详解】,可配方为,.故答案为:.【点睛】本题考查用配方法来解一元二次方程,熟练配方是解决此题的关键.三、解答题(共66分)19、AB=2,BC= .【解析】要求AB和BC,由

18、已知B、C为特殊角,故可构造直角三角形来辅助求解.过点A作ADBC于D,首先在RtACD中求出CD和AD,然后在RtABD中求出BD和AB,从而BC=BD+DC可求.【详解】解:作三角形的高AD.在RtACD中,ACD=45,AC=2,AD=CD=.在RtABD中,B=30,AD=,BD=,AB=.CB=BD+CD=+.故答案为AB=2, BC= .【点睛】本题考查解直角三角形,解答本题的关键是熟练掌握勾股定理与特殊角的三角函数值.20、(1)证明见解析;(2)CD=1【分析】(1)利用BA平分EBD得到ABEABD,再根据圆周角定理得到ABEADC,ABDACD,利用等量代换得到ACDADC

19、,从而得到结论;(2)根据等腰三角形的性质得到EABE,则可证明ABEACD,然后根据相似比求出CD的长【详解】(1)证明:BA平分EBD,ABEABD,ABEADC,ABDACD,ACDADC,ACAD;(2)解:AEAB,EABE,EABEACDADC,ABEACD,CDAD61【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了圆周角定理21、(1)方程总有两个不相等的实数根;(2)-2【分析】(

20、1)根据一元二次方程的根的判别式即可得出=11,由此即可证出方程总有两个不相等的实数根;(2)将x=1代入原方程求出m的值,再将m值代入代数式中求值即可【详解】解:(1)关于x的一元二次方程x2+(2m+1)x+m(m+1)1(2m+1)24m(m+1)11, 方程总有两个不相等的实数根; (2)x1是此方程的一个根,把x1代入方程中得到m(m+1)1, 把m(m+1)1代入得m2+m2=-2【点睛】本题考查了根的判别式及用整体代入法求代数式的值,熟练掌握“当一元二次方程根的判别式1时,方程有两个不相等的实数根”是解题的关键22、AD=10, BAD=60.【解析】先证明ADE是等边三角形,再

21、推出A,C,E共线;由于ADE=60,根据旋转得出AB=CE=6,求出AE即可【详解】解:由旋转可知:ABDECDAB=EC=6, BAD=E AD=EDADE=60ADE是等边三角形 AE=ADE=DAE=60BAD=60BAC=120DAC=60=DAE C在AE上 AD=AC+CE=4+6=10. 【点睛】本题考查的知识点是旋转的性质, 等边三角形的性质,解题的关键是熟练的掌握旋转的性质, 等边三角形的性质.23、(1)30,6;(2);t【分析】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的

22、速度,进一步求出AB的长;(2)如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OFQC可求出t的值;设AB,CD的中点分别为E,F,O与AD,BC的切点分别为N,G,过点Q作QHAD于H,如图21,当O第一次与PQ相切于点M时,证QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QPQH可求出t的值;同理,如图22,当O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围【详解】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,AP6t,SPDQ

23、(6065)5a450,a6,AB5a30,故答案为:30,6;(2)如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QCAB+BC6t906t,OF4t,OFQC且点F是DC的中点,OFQC,即4t (906t),解得,t;设AB,CD的中点分别为E,F,O与AD,BC的切点分别为N,G,过点Q作QHAD于H,如图21,当O第一次与PQ相切于点M时,AH+AP6t,AB+BQ6t,且BQAH,HPQHAB30,QHP是等腰直角三角形,CGDNOF4t,QMQG904t6t9010t,PMPN604t6t6010t,QPQM+MP15020t,QPQH,15020t30,t;如图22,当O第二次与PQ相切于点M时,AH+AP6t,AB+BQ6t,且BQAH,HPQHAB30,QHP是等腰直角三角形,CGDNOF4t,QMQG4t(906t)10t90,PMPN4t(606t)10t60,QPQM+MP20t150,QPQH,20t15030,t,综上所述,当PQ与O有公共点时,t的取值范围为:t【点睛】本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键24、(1)共有8种可能;(2);(3)【分析】(1)用树状图分3次实验列举出所有情况即可;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论