2023学年四川省达州市大竹县九年级数学第一学期期末统考模拟试题含解析_第1页
2023学年四川省达州市大竹县九年级数学第一学期期末统考模拟试题含解析_第2页
2023学年四川省达州市大竹县九年级数学第一学期期末统考模拟试题含解析_第3页
2023学年四川省达州市大竹县九年级数学第一学期期末统考模拟试题含解析_第4页
2023学年四川省达州市大竹县九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1已知则( )ABCD2为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼( )A条B条C条D条3已知反比例函数

2、y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A(6,1)B(1,6)C(2,3)D(3,2)4如图,在正方形ABCD中,AB5,点M在CD的边上,且DM2,AEM与ADM关于AM所在的直线对称,将ADM按顺时针方向绕点A旋转90得到ABF,连接EF,则线段EF的长为()ABCD5如图1,点从的顶点出发,沿匀速运动到点,图2是点运动时,线段的长度随时间变化的关系图象,其中为曲线部分的最低点,则的面积为()ABCD6如图,在中,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:;当点与点重合时,;.其中正确的结论有( )A1个B2个C3个

3、D4个7如图,已知ABC和EDC是以点C为位似中心的位似图形,且ABC和EDC的周长之比为1:2,点C的坐标为(2,0),若点B的坐标为(5,1),则点D的坐标为()A(4,2)B(6,2)C(8,2)D(10,2)8如图,直线l和双曲线y=(k0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设AOC的面积为S1、BOD的面积为S2、POE的面积为S3,则( )AS1S2S3BS1S2S3CS1S2S3DS1S2S39如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )ABCD10如图,AB为的直径,

4、点C在上,若AB=4,则O到AC的距离为( )A1B2CD11根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为( )ABCD12对于二次函数y=2(x1)23,下列说法正确的是()A图象开口向下B图象和y轴交点的纵坐标为3Cx1时,y随x的增大而减小D图象的对称轴是直线x=1二、填空题(每题4分,共24分)13如图,有一斜坡,坡顶离地面的高度为,斜坡的倾斜角是,若,则此斜坡的为_m14若两个相似三角形的周长比是,则对应中线的比是_15如图,在平面直角坐标系中,ABC和ABC是以坐标原点O为位似中心的位似图形,且点B(3,1),

5、B(6,2),若点A(5,6),则A的坐标为_.16如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tanCOA=,若函数的图象经过顶点B,则k的值为_17计算的结果是_18已知x=1是关于x的一元二次方程2x2x+a=0的一个根,则a的值是_三、解答题(共78分)19(8分)如图,在ABC中,BD平分ABC,交AC于点D,点E是AB上一点,连接DE,BD2=BCBE.证明:BCDBDE.20(8分)如图,在矩形中,是上一点,连接的垂直平分线分别交于点,连接(1)求证:四边形是菱形;(2)若为的中点,连接,求的长21(8分)(1)如图1,在中,点在边上,且,求的度数

6、;(2)如图2,在菱形中,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).22(10分)已知二次函数的图象经过点A(0,4),B(2,m).(1)求二次函数图象的对称轴.(2)求m的值.23(10分)计算:(1)(2)24(10分)已知是上一点,.()如图,过点作的切线,与的延长线交于点,求的大小及的长;()如图,为上一点,延长线与交于点,若,求的大小及的长.25(12分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖

7、直的立杆上、两点间的距离为,处到观众区底端处的水平距离为求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度(,结果精确到)26如图,已知二次函数的图象的顶点坐标为,直线与该二次函数的图象交于,两点,其中点的坐标为,点在轴上是轴上的一个动点,过点作轴的垂线分别与直线和二次函数的图象交于,两点(1)求的值及这个二次函数的解析式;(2)若点的横坐标,求的面积;(3)当时,求线段的最大值;(4)若直线与二次函数图象的对称轴交点为,问是否存在点,使以,为顶点的四边形是平行四边形?若存在,请求出此时点的坐标;若不存在,请说明理由 参考答案一、选择题(每题4分,共48分)1、A【解析】根据特殊角的三角函

8、数值求解即可.【详解】,故选:A.【点睛】本题考查了特殊角的三角函数值,比较简单,熟记特殊角的三角函数值是解题的关键.2、B【分析】利用样本出现的概率估计整体即可.【详解】设湖里有鱼x条根据题意有 解得,经检验,x=800是所列方程的根且符合实际意义,故选B【点睛】本题主要考查用样本估计整体,找到等量关系是解题的关键.3、B【解析】试题分析:反比例函数y=的图象经过点(2,3),k=23=6,A、(6)1=66,此点不在反比例函数图象上;B、16=6,此点在反比例函数图象上;C、2(3)=66,此点不在反比例函数图象上;D、3(2)=66,此点不在反比例函数图象上故选B考点:反比例函数图象上点

9、的坐标特征4、A【分析】连接BM先判定FAEMAB(SAS),即可得到EFBM再根据BCCDAB1,CM2,利用勾股定理即可得到,RtBCM中,BM,进而得出EF的长【详解】解:如图,连接BMAEM与ADM关于AM所在的直线对称,AEAD,MADMAEADM按照顺时针方向绕点A旋转90得到ABF,AFAM,FABMADFABMAEFAB+BAEBAE+MAEFAEMABFAEMAB(SAS)EFBM四边形ABCD是正方形,BCCDAB1DM2,CM2在RtBCM中,BM,EF,故选:A【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.5、C【分析】根据图象可知点M

10、在AB上运动时,此时AM不断增大,而从B向C运动时,AM先变小后变大,从而得出AC=AB,及时AM最短,再根据勾股定理求出时BM的长度,最后即可求出面积【详解】解:当时,AM最短AM=3由图可知,AC=AB=4当时,在中,故选:C【点睛】本题考查函数图像的认识及勾股定理,解题关键是将函数图像转化为几何图形中各量6、B【分析】利用勾股定理判定正确;利用三角形中位线可判定正确;中利用相似三角形的性质;中利用全等三角形以及勾股定理即可判定其错误.【详解】,故正确;当点与点重合时,CFAB,FGAC,FG为ABC的中位线GC=MH=,故正确;ABE不是三角形,故不可能,故错误;AC=BC,ACB=90

11、A=5=45将ACF顺时针旋转90至BCD,则CF=CD,1=4,A=6=45,BD=AF2=451+3=3+4=45DCE=2在ECF和ECD中,CF=CD,DCE=2,CE=CEECFECD(SAS)EF=DE5=45BDE=90,即故错误;故选:B.【点睛】此题主要考查等腰直角三角形、三角形中位线以及全等三角形的性质、勾股定理的运用,熟练掌握,即可解题.7、A【分析】作BGx轴于点G,DHx轴于点H,根据位似图形的概念得到ABCEDC,根据相似是三角形的性质计算即可【详解】作BGx轴于点G,DHx轴于点H,则BGDH,ABC和EDC是以点C为位似中心的位似图形,ABCEDC,ABC和ED

12、C的周长之比为1:2,由题意得,CG3,BG1,BGDH,BCGDCH,即,解得,CH6,DH2,OHCHOC4,则点D的坐标为为(4,2),故选:A【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键8、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得OP1M的面积等于S1和S2 ,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1S2= 设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M

13、因此而图象可得 所以S1S2S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.9、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.10、C【分析】连接OC,BC,过点O作ODAC于D,可得OD/BC,利用平行线段成比例可知 和AD=,利用勾股定理,可得,列出方程, 即可求出OD的长.【详解】解:连接OC,BC,过点O作ODAC于D,ADO=90,AB为的直径,AB=4,ACB=90,OA=OC=,O

14、D/BC,AD=,在中,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.11、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】亿=3.09241012,故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、C【解析】试题分析:A、y2(x1)23,a20,图象的

15、开口向上,故本选项错误;B、当x0时,y2(01)231,即图象和y轴的交点的纵坐标为1,故本选项错误;C、对称轴是直线x1,开口向上,当x1时,y随x的增大而减少,故本选项正确;C、图象的对称轴是直线x1,故本选项错误故选:C点睛:本题考查了二次函数的图象和性质的应用,主要考查学生的观察能力和理解能力,用了数形结合思想二、填空题(每题4分,共24分)13、1【分析】由三角函数定义即可得出答案【详解】解:, ,;故答案为:1【点睛】本题考查了解直角三角形的应用;熟练掌握三角函数定义是解题的关键14、4:9【分析】相似三角形的面积之比等于相似比的平方【详解】解:两个相似三角形的周长比是,两个相似

16、三角形的相似比是,两个相似三角形对应中线的比是,故答案为15、 (2.5,3)【分析】利用点B(3,1),B(6,2)即可得出位似比进而得出A的坐标.【详解】解:点B(3,1),B(6,2),点A(5,6),A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心16、1【分析】作BDx轴于点D,如图,根据菱形的性质和平行线的性质可得BAD=COA,于是可得,在RtABD中,由AB=5则可根据勾股定理求出BD和AD的长,进而可得点B的坐标,再把点

17、B坐标代入双曲线的解析式即可求出k【详解】解:作BDx轴于点D,如图,菱形OABC的边长为5,AB=OA=5,ABOC,BAD=COA,在RtABD中,设BD=3x,AD=4x,则根据勾股定理得:AB=5x=5,解得:x=1,BD=3,AD=4,OD=9,点B的坐标是(9,3),的图象经过顶点B,k=39=1故答案为:1【点睛】本题考查了菱形的性质、解直角三角形、勾股定理和待定系数法求函数的解析式等知识,属于常考题型,熟练应用上述知识、正确求出点B的坐标是解题的关键17、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可【详解】解:原式2-21故答案为1【点睛】本题考查了二次根式

18、的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍18、1【解析】将x=1代入方程得关于a的方程, 解之可得.【详解】解:将x=1代入方程得:2-1+a=0,解得:a=-1,故答案为: -1.【点睛】本题主要考查一元二次方程的解.三、解答题(共78分)19、见解析【分析】根据角平分线的定义可得,由可得,根据相似三角形的判定定理即可得BCDBDE.【详解】BD平分ABC,BCDBDE.【点睛】本题考查相似三角形的判定,如果两个三角形的两组对应边的比相等,且相对应的夹角

19、相等,那么这两个三角形相似;正确找出对应边和对应角是解题关键.20、(1)证明见解析;(2)1【分析】(1)先根据矩形的性质、平行线的性质可得,再根据垂直平分线的性质可得,然后根据三角形全等的判定定理与性质可得,最后根据平行四边形的判定、菱形的判定即可得证;(2)先根据三角形中位线定理可得,再根据矩形的性质可得,然后在中,利用勾股定理即可得【详解】(1)四边形是矩形垂直平分四边形是平行四边形又四边形是菱形;(2)垂直平分是的中点是的中点,(三角形中位线定理)【点睛】本题考查了矩形的性质、菱形的判定、三角形全等的判定定理与性质、三角形中位线定理等知识点,熟练掌握并灵活运用各判定定理与性质是解题关

20、键21、(1);(2)详见解析.【分析】(1)设,利用等边对等角,可得,根据三角形外角的性质可得,再根据等边对等角和三角形的内角和公式即可求出x,从而求出B.(2)根据等腰三角形的定义和判定定理画图即可.【详解】证明:(1)设又又又解出:(2)根据等腰三角形的定义和判定定理,画出如下图所示,(任选其三即可).【点睛】此题考查的是等腰三角形的性质及判定,掌握等边对等角、等角对等边和方程思想是解决此题的关键.22、(1)x=1;(2)m=4【分析】(1)由顶点式即可得出该二次函数图象的对称轴;(2)利用二次函数的对称性即可解决问题.【详解】解:(1),该二次函数图象的对称轴为:直线x=1,(2)该

21、二次函数图象的对称轴为:直线x=1,A(0,4),B(2,m).是关于直线x=1成对称,故m=4.【点睛】本题考查了二次函数的顶点式的性质,掌握顶点式的顶点坐标及对称性是解题的关键.23、(1);(2)【分析】(1)分别根据二次根式的性质、0指数幂的意义和负整数指数幂的运算法则计算各项,再合并即可;(2)根据分式的乘方和分式的乘除混合运算法则解答即可【详解】解:(1)原式=;(2)原式【点睛】本题考查了二次根式的性质、0指数幂、负整数指数幂以及分式的乘方和分式的乘除混合运算等知识,属于基础题目,熟练掌握上述知识是解题的关键24、(),PA4;(),【分析】()易得OAC是等边三角形即AOC=6

22、0,又由PC是O的切线故PCOC,即OCP=90可得P的度数,由OC=4可得PA的长度()由()知OAC是等边三角形,易得APC=45;过点C作CDAB于点D,易得AD=AO=CO,在RtDOC中易得CD的长,即可求解【详解】解:()AB是O的直径,OA是O的半径.OAC=60,OA=OC,OAC是等边三角形.AOC=60.PC是O的切线,OC为O的半径,PCOC,即OCP=90P=30.PO=2CO=8.PA=PO-AO=PO-CO=4.()由()知OAC是等边三角形,AOC=ACO=OAC=60AQC=30.AQ=CQ,ACQ=QAC=75ACQ-ACO=QAC-OAC=15即QCO=QAO=15.APC=AQC+QAO=45.如图,过点C作CDAB于点D.OAC是等边三角形,CDAB于点D,DCO=30,AD=AO=CO=2.APC=45,DCQ=APC=45PD=CD在RtDOC中,OC=4,DCO=30,OD=2,CD=2PD=CD=2AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用25、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论