




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是( )Ak1Bk1Ck1D0k 12由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是( )ABCD3如图,的
2、直径,是的弦,垂足为,且,则的长为( )A10B12C16D184在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )ABCD5如图,在ABC中,B=90,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合)如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小A1B2C3D46如图,PA、PB、CD分别切O于点A、B、E,CD分别交PA、PB于点C、D下列关系:PA=PB;ACO=DCO;BOE和BDE互补;PCD的周长是线段PB长度的
3、2倍.则其中说法正确的有( )A1个B2个C3个D4个7下列二次根式能与合并的是( )ABCD8如图,菱形ABCD中,EFAC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB1:2,则AH:AC的值为()ABCD9八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A95分,95分B95分,90分C90分,95分D95分,85分10如图,已知O的半径为13,弦AB长为24,则点O到AB的距离是( )A6B5C4D311直角三角形的两边长分别为16和12,则此三角形的外接圆半径是( )A8
4、或6B10或8C10D812用配方法解一元二次方程,变形正确的是()ABCD二、填空题(每题4分,共24分)13在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是_.14在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同随机摸出一只球记下颜色后放回,不断重复上述实验,统计数据如下:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601共有白球_
5、只15如图,AC是O的直径,ACB=60,连接AB,过A、B两点分别作O的切线,两切线交于点P若已知O的半径为1,则PAB的周长为_16如图,O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为_17在直角坐标系中,点A(-7,)关于原点对称的点的坐标是_18直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为_三、解答题(共78分)19(8分)计算:解方程:20(8分)一个布袋中有红、黄、绿三种颜色的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下它的颜色(1)试用树形图或列表法中的一种列举出
6、这两次摸出球的颜色所有可能的结果;(2)求两次摸出球中至少有一个绿球的概率21(8分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分如果M是O中弦CD的中点,EM经过圆心O交O于点E,并且CD4,EM6,求O的半径22(10分)如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象的一个交点为 (1)求这个反比例函数的解析式;(2)求两个函数图像的另一个交点的坐标;并根据图象,直接写出关于的不等式的解集23(10分)如图,为的直径,直线于点.点在上,分别连接,且的延长线交于点,为的切线交于点.(1)求证:;(2)连接,若,求线段的长.24(10分)解方程(1)(用配方法)(2)
7、 (3)计算:25(12分)(问题情境)(1)古希腊著名数学家欧几里得在几何原本提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项射影定理是数学图形计算的重要定理其符号语言是:如图1,在RtABC中,ACB=90,CDAB,垂足为D,则:(1)AC=ABAD;(2)BC=ABBD;(3)CD = ADBD;请你证明定理中的结论(1)AC = ABAD(结论运用)(2)如图2,正方形ABCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CFBE,垂足为F,连接OF,求证:BO
8、FBED;若,求OF的长26如图,抛物线yax2+bx+3(a0)的对称轴为直线x1,抛物线交x轴于A、C两点,与直线yx1交于A、B两点,直线AB与抛物线的对称轴交于点E(1)求抛物线的解析式(2)点P在直线AB上方的抛物线上运动,若ABP的面积最大,求此时点P的坐标(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标参考答案一、选择题(每题4分,共48分)1、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k 1,所以
9、k的取值范围是0k 1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.2、A【分析】增长率问题,一般用增长后的量=增长前的量(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程【详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【点睛】本题考查了求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b3、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理
10、和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC,OC=OB=,BE=OE=OBBE=6是的弦,DE=CE=CD= DECE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.4、A【分析】列举出所有情况,看两位数中是奇数的情况占总情况的多少即可【详解】解:在0,1,2三个数中任取两个,组成两位数有:12,10,21,20四个,是奇数只有21,所以组成的两位数中是奇数的概率为故选A【点睛】数目较少,可用列举法求概率用到的知识点为:概率=所求情况数与总情况数之比5、C【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三
11、角形PBQ的面积”列出函数关系求最小值【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=SABC-SPBQ= 126- (6-t)2t=t2-6t+36=(t-3)2+1当t=3s时,S取得最小值故选C【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值6、D【详解】根据切线长定理可知PA=PB,故正确;同理可知CA=CE,可知CO为ACE的角平分线,所以ACO=DCO,故正确;同理可知DE=BD,由切线的性质可知OBD=OED=90,可根据四边形的内角和为360知BOE+BDE=180,即B
12、OE和BDE互补,故正确;根据切线长定理可得CE=CA,BD=DE,而PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=2PB,故正确.故选D.7、C【分析】化为最简二次根式,然后根据同类二次根式的定义解答【详解】解:的被开方数是3,而= 、=2、是最简二次根式,不能再化简,以上三数的被开方数分别是2、2、15,所以它们不是同类二次根式,不能合并,即选项A、B、D都不符合题意,=2的被开方数是3,与是同类二次根式,能合并,即选项C符合题意 故选:C.【点睛】本题考查同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式8、
13、B【分析】连接BD,如图,利用菱形的性质得ACBD,ADBC,ADBC,再证明EFBD,接着判断四边形BDEF为平行四边形得到DEBF,设AEx,FBDE2x,BC3x,所以AE:CF1:5,然后证明AEHCFH得到AH:HCAE:CF1:5,最后利用比例的性质得到AH:AC的值【详解】解:连接BD,如图,四边形ABCD为菱形,ACBD,ADBC,ADBC,EFAC,EFBD,而DEBF,四边形BDEF为平行四边形,DEBF,由AE:FB1:2,设AEx,FBDE2x,BC3x,AE:CFx:5x1:5,AECF,AEHCFH,AH:HCAE:CF1:5,AH:AC1:1故选:B【点睛】此题主
14、要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.9、A【详解】这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.10、B【解析】过点O作OCAB,垂足为C,则有AC=AB=24=12,在RtAOC中,ACO=90,AO=13, OC=5,即点O到AB的距离是5.11、B【分析】分两种情况:16为斜边长;16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径【详解】解:由勾股定理可知: 当直角三角形的斜边长为16时,这个三角形的外接圆半径为8; 当两条直角边长分别为16和12,则直角三角形的斜边
15、长= 因此这个三角形的外接圆半径为1 综上所述:这个三角形的外接圆半径等于8或1 故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆是解题的关键12、B【分析】根据完全平方公式和等式的性质进行配方即可【详解】解:故选:B【点睛】本题考查了配方法,其一般步骤为:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方二、填空题(每题4分,共24分)13、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可【详解】画树状图图如下:一共有20种情况,有6种情况两次都摸到红球,两次都摸到红球的概率是
16、故答案为:【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比14、30【分析】根据利用频率估计概率得到摸到白球的概率为60%,然后根据概率公式计算n的值【详解】白球的个数=只故答案为:30【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率15、 【解析】根据圆周角定理的推论及切线长定理,即可得出答案解:AC是O的直径,ABC=90,ACB=60,BAC=30,CB=1,AB=,AP为
17、切线,CAP=90,PAB=60,又AP=BP,PAB为正三角形,PAB的周长为3点睛:本题主要考查圆周角定理及切线长定理.熟记圆的相关性质是解题的关键.16、6【分析】作EMBC,HNAD,易证得,继而证得,利用等量代换即可求得答案.【详解】过E作EMBC于M,过H作HNAD于N,如图,四边形ABCD为矩形,ADBC, ,四边形ABCD为矩形,且EMBC,HNAD,四边形ABME 、EMHN、NHCD均为矩形,AE=BM,EN=MH,ND=HC,在和中,(HL) ,故答案为:【点睛】本题考查了矩形的判定和性质、直角三角形的判定和性质、平行弦所夹的弧相等、等弧对等弦等知识,灵活运用等量代换是解
18、题的关键.17、(7,)【分析】直接利用关于原点对称点的性质得出答案【详解】解:点A(-7,)关于原点对称的点的坐标是:(7,)故答案为:(7,)【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键18、1【解析】连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答【详解】解:连接OA,OB,OC,则点O到三边的距离就是AOC,BOC,AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:ACx+BCx+ABx=ACBC,由题意可得:AC=4,BC=3,AB=54x+3x+5x=34解得:x=1故答案为:1.【点睛】本题中点到三边的距离就是直角三角形
19、的内切圆的半径长,内切圆的半径= 三、解答题(共78分)19、(1);(2),【分析】根据三角函数性质和一元二次方程的概念即可解题.【详解】(1)解:原式(2)解: ,【点睛】本题考查了三角函数和一元二次方程的求解,属于简单题,熟悉运算性质是解题关键.20、(1)详见解析;(2)【分析】(1)利用树状图列举出所有可能,注意是放回小球再摸一次;(2)列举出符合题意的各种情况的个数,再根据概率公式解答即可【详解】(1)列树状图如下:故(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况(2)由树状图可知共有339种可能,“两次摸出球中
20、至少有一个绿球”的有5种,所以概率是:.【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比21、 【解析】连接OC,由垂径定理可得: EMCD,即可求得的半径.【详解】解:连接OC,M是O弦CD的中点,根据垂径定理:EMCD,又CD4则有:CMCD2,设圆的半径是x米,在RtCOM中,有OC2CM2+OM2,即:x222+(6x)2,解得:x,所以圆的半径长是【点睛】本题考查的是圆,熟练掌握垂径定理是解题的关键.22、(1) (2)或【分析】(1)把A坐标代入一次函数解析式求出a
21、的值,确定出A的坐标,再代入反比例解析式求出k的值,即可确定出反比例解析式;(2)解析式联立求得B的坐标,然后根据图象即可求得【详解】解:(1) 点在一次函数图象上, 点在反比例函数的图象上, (2)由或由图象可知,的解集是或 【点睛】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征求出点A、B的坐标是解题的关键23、(1)详见解析;(2)【分析】(1)根据切线的性质得,由切线长定理可证,从而,然后根据等角的余角相等得到,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明ABCABD
22、,利用相似比得到AD=,然后证明OF为ABD的中位线,从而根据三角形中位线性质求出OF的长【详解】(1)证明:是的直径,(直径所对的圆周角是),是的直径,于点,是的切线(经过半径外端且与半径垂直的直线是圆的切线),是的切线,(切线长定理),.(2)由(1)可知,是直角三角形,在中,根据勾股定理求得,在和中,(两个角对应相等的两个三角形相似),是的中位线,(三角形的中位线平行于第三边并且等于第三边的一半).【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,勾股定理,相似三角形得判定与性质,余角的性质,以及三角形的中位线等知识.熟练掌握切线的判定与性质、相似三角形得判定与性质是解答本题的
23、关键24、(1),;(2),;(3)【分析】(1)方程整理配方后,开方即可求出解;(2)把方程左边进行因式分解,求方程的解;(3)根据二次根式、特殊角的三角函数值、0次幂、负整数指数幂的运算法则计算即可【详解】(1),方程整理得:,配方得:,即,开方得:,解得:,;(2),即,或,解得:, ;(3)【点睛】本题主要考查了解一元二次方程配方法、因式分解法以及实数的混合运算,特殊角的三角函数值,熟练掌握一元二次方程的各种解法以及熟记特殊角的三角函数值是解题的关键25、(1)见解析;(2)见解析;【分析】(1)证明ACDABC,即可得证;(2)BC2=BOBD,BC2=BFBE,即BOBD=BFBE
24、,即可求解;在RtBCE中,BC=3,BE=,利用BOFBED,即可求解【详解】解:(1)证明:如图1,CDAB,BDC=90,而A=A,ACB=90,ACDABC,AC:AB=AD:AC,AC = ABAD;(2)证明:如图2,四边形ABCD为正方形,OCBO,BCD=90,BC2=BOBD,CFBE,BC2=BFBE,BOBD=BFBE,即,而OBF=EBD,BOFBED;在RtBCE中,BC=3,BE=,CE=,DE=BC-CE=2;在RtOBC中,OB=BC=,BOFBED,即,OF=.【点睛】本题为三角形相似综合题,涉及到勾股定理运用、正方形基本知识等,难点在于找到相似三角形,此类题目通常难度较大26、 (1)yx22x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(6,3),D3(2,7)【分析】(1)令y0,求出点A的坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 3643-2019气压劈裂真空预压加固软土地基技术规程
- DB31/T 680.3-2017城市公共用水定额及其计算方法第3部分:游泳池
- DB31/T 229-2011矿物油型有机热载体
- DB31/T 1256-2020消毒产品卫生安全评价信息数据集
- DB31/T 1193-2019山鸡养殖技术规范
- CAB 1027-2014汽车罩
- 高中三年如何规划:从高一到高三的全程指南
- 2024年工艺气体压缩机资金筹措计划书代可行性研究报告
- 海外医疗记录租赁与安全保障合同
- 跨境电商物流配送车队委托国际化经营管理合同
- 国开《Windows网络操作系统管理》形考任务4-配置故障转移群集服务实训
- 风力发电居间合作协议书范本
- 基于单片机的五岔路口交通灯方案设计
- 2023污水处理用复合碳源技术规范
- 4-6岁一盘粽子-超轻粘土课件
- 解读《2023年中国血脂管理指南》
- 承插型盘扣式钢管脚手架典型产品构配件种类及规格
- 马铃薯(土豆)深加工项目可行性研究报告
- 《眼底病图谱》教学课件
- 公司声誉风险管理办法(2022年修订)
- 新能源汽车故障诊断与排除课件:项目三 高压互锁故障诊断
评论
0/150
提交评论