辽宁省沈阳134中学2023学年数学九年级第一学期期末综合测试模拟试题含解析_第1页
辽宁省沈阳134中学2023学年数学九年级第一学期期末综合测试模拟试题含解析_第2页
辽宁省沈阳134中学2023学年数学九年级第一学期期末综合测试模拟试题含解析_第3页
辽宁省沈阳134中学2023学年数学九年级第一学期期末综合测试模拟试题含解析_第4页
辽宁省沈阳134中学2023学年数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1若,则下列各式一定成立的是( )ABCD2如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF2,则BD的长是()A2B3CD3若扇形的半径为2,圆心角为,则这个扇形的面积

2、为( )ABCD4下列函数属于二次函数的是ABCD5如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A(502x)(30 x)1786B3050230 x50 x1786C(302x)(50 x)178D(502x)(30 x)1786如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为( )A1.1米B1.5米C1.9米D2.3米7下列关系式中,是的反

3、比例函数的是( )ABCD8某闭合并联电路中,各支路电流与电阻成反比例,如图表示该电路与电阻的函数关系图象,若该电路中某导体电阻为,则导体内通过的电流为()ABCD9用配方法解一元二次方程时,原方程可变形为( )ABCD10抛物线yax2bxc(a0)的对称轴为直线x1,与x轴的一个交点在(3,0)和(2,0)之间,其部分图象如图,则下列结论:4acb20;2ab0;abc0;点(x1,y1),(x2,y2)在抛物线上,若x1x2,则y1y2 .正确结论的个数是( )A1B2C3D4二、填空题(每小题3分,共24分)11某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价

4、的百分率相同,求每次降价的百分率设每次降价的百分率为x,所列方程是_12的半径为,、是的两条弦,则和之间的距离为_13已知三点A(0,0),B(5,12),C(14,0),则ABC内心的坐标为_14在平面直角坐标系中,反比例函数的图象经过点,则的值是_15一元二次方程x2=x的解为 16如图,圆心都在x轴正半轴上的半圆O1,半圆O2,半圆On与直线l相切设半圆O1,半圆O2,半圆On的半径分别是r1,r2,rn,则当直线l与x轴所成锐角为30,且r11时,r2018_.17若双曲线的图象在第二、四象限内,则的取值范围是_18如图:点是圆外任意一点,连接、,则_(填“”、“”或“=”)三、解答题

5、(共66分)19(10分)解方程:(l)(2)(配方法)20(6分)如图,已知直线yx+2与x轴、y轴分别交于点B,C,抛物线yx2+bx+c过点B、C,且与x轴交于另一个点A(1)求该抛物线的表达式;(2)若点P是x轴上方抛物线上一点,连接OP若OP与线段BC交于点D,则当D为OP中点时,求出点P坐标在抛物线上是否存在点P,使得POCACO若存在,求出点P坐标;若不存在,请说明理由21(6分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y的图象上,OA1,OC6,试求出正方形ADEF的边长22(8分)如图,A

6、BD是O的内接三角形,E是弦BD的中点,点C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C(1)求证:BC是O的切线;(2)若O的半径为6,BC8,求弦BD的长23(8分)如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为 ;点的坐标为 ;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一点,的面积恰好等于正方形的面积,求点的坐标.24(8分)如图,矩形中,是边上一动点,过点的反比例函数的图象与边相交于点(1)点运动到边的中点时,求反比例函数的表达式;(2)连接,求的值25(10分)在平面直角坐标系中,二次函数 yax2bx2

7、的图象与 x 轴交于 A(3,0),B(1,0)两点,与 y 轴交于点C (1)求这个二次函数的关系解析式 ,x 满足什么值时 y0 ? (2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P,使ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由 (3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由26(10分)如图,在平面直角坐标系中,已知矩形的三个顶点、.抛物线的解析式为.(1)如图一,若抛物线经过,两点,直接写出点的坐标 ;抛物线的对称轴为直线 ;(2)如图二

8、:若抛物线经过、两点,求抛物线的表达式.若点为线段上一动点,过点作交于点,过点作于点交抛物线于点.当线段最长时,求点的坐标;(3)若,且抛物线与矩形没有公共点,直接写出的取值范围.参考答案一、选择题(每小题3分,共30分)1、B【分析】由 等式的两边都除以,从而可得到答案【详解】解: 等式的两边都除以:, 故选B【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键2、C【分析】根据折叠得出DFEA60,ADDF,AEEF,设BDx,ADDF5x,求出DFBFEC,证DBFFCE,进而利用相似三角形的性质解答即可【详解】解:ABC是等边三角

9、形,ABC60,ABBCAC5,沿DE折叠A落在BC边上的点F上,ADEFDE,DFEA60,ADDF,AEEF,设BDx,ADDF5x,CEy,AE5y,BF2,BC5,CF3,C60,DFE60,EFC+FEC120,DFB+EFC120,DFBFEC,CB,DBFFCE,即,解得:x,即BD,故选:C【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.3、B【分析】直接利用扇形的面积公式计算【详解】这个扇形的面积:故选:B【点睛】本题考查了扇形面积的计算:扇形面积计算公式:设圆心角是,圆的半径为R的扇形面积为S,则或(其中为扇形的弧长)4、A【分

10、析】一般地,我们把形如y=ax+bx+c(其中a,b,c是常数,a0)的函数叫做二次函数.【详解】由二次函数的定义可知A选项正确,B和D选项为一次函数,C选项为反比例函数.【点睛】了解二次函数的定义是解题的关键.5、A【分析】设道路的宽度为x米把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(502x)米、(30 x)米,所以列方程得(502x)(30 x)1786,故选:A【点睛】本题考查了由实际问题抽象出一元二次

11、方程,对图形进行适当的平移是解题的关键6、D【分析】根据黄金分割点的比例,求出距离即可【详解】黄金分割点的比例为 (米)主持人站立的位置离舞台前沿较近的距离约为 (米)故答案为:D【点睛】本题考查了黄金分割点的实际应用,掌握黄金分割点的比例是解题的关键7、C【解析】根据反比例函数的定义逐一判断即可【详解】解:A、是正比例函数,故A错误;B、是正比例函数,故B错误;C、是反比例函数,故C正确;D、是二次函数,故D错误;故选:C【点睛】本题考查了反比例函数的定义,形如y (k0)的函数是反比例函数正确理解反比例函数解析式是解题的关键.8、B【分析】电流I(A)与电阻R()成反比例,可设I=,根基图

12、象得到图象经过点(5,2),代入解析式就得到k的值,从而能求出解析式【详解】解:可设,根据题意得:,解得k=10,当R=4时,(A)故选B【点睛】本题主要考查的是反比例函数的应用,利用待定系数法是求解析式时常用的方法9、B【解析】试题分析:,故选B考点:解一元二次方程-配方法10、C【分析】根据二次函数图像与b24ac的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:由图可知,将抛物线补全,抛物线yax2bxc(a0)与x轴有两个交点b24ac04acb20,故正确;抛物线yax2bxc(a0)的对称轴为直线x1解得:2ab0,故正确;抛物线yax2bxc(a0)的对称轴为直线x1

13、,与x轴的一个交点在(3,0)和(2,0)之间,此抛物线与x轴的另一个交点在(0,0)和(1,0)之间在对称轴的右侧,函数y随x增大而减小当x=1时,y0,将x=1代入解析式中,得:yabc0故正确;若点(x1,y1),(x2,y2)在对称轴右侧时,函数y随x增大而减小即若x1x2,则y1y2故错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是560(1-x),第二次降价后的价格是560(1-x)2,据此列方程即

14、可【详解】解:设每次降价的百分率为x,由题意得:560(1-x)2=1,故答案为560(1-x)2=1【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程12、7cm或17cm【分析】作OEAB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OFCD,再利用垂径定理得到AE12,CF5,然后根据勾股定理,在RtOAE中计算出OE5,在RtOCF中计算出OF12,再分类讨论:当圆心O在AB与CD之间时,EFOFOE;当圆心O不在AB与CD之间时,EFOFOE【详解】解:作OEAB于E,交CD于F,连结OA、OC,如图,ABC

15、D,OFCD,AEBEAB12,CFDFCD5,在RtOAE中,OA13,AE12,OE,在RtOCF中,OC13,CF5,OF,当圆心O在AB与CD之间时,EFOFOE12517;当圆心O不在AB与CD之间时,EFOFOE1257;即AB和CD之间的距离为7cm或17cm故答案为:7cm或17cm【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理和分类讨论的数学思想13、(6,4)【分析】作BQAC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得OAB内切圆半径,过点P作PDAC于D,PFAB于F,PEBC于

16、E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案【详解】解:如图,过点B作BQAC于点Q,则AQ=5,BQ=12,AB=,CQ=AC-AQ=9,BC=设P的半径为r,根据三角形的面积可得:r= 过点P作PDAC于D,PFAB于F,PEBC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,点P的坐标为(6,4),故答案为:(6,4)【点睛】本题主要考

17、查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键14、【分析】将点B的坐标代入反比例函数求出k,再将点A的坐标代入计算即可;【详解】(1)将代入得,k=-6,所以,反比例函数解析式为,将点的坐标代入得所以m,故填:.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.15、x1=0,x2=1【解析】试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案解:x2=x,移项得:x2x=0,x(x1)=0,x=0或x1=0,x1=0,x2=1故答案为x1=0,x2=1考点:解一元二次方程-因式分解法16

18、、1【解析】分别作O1Al,O2Bl,O3Cl,如图,半圆O1,半圆O2,半圆On与直线L相切,O1A=r1,O2B=r2,O3C=r3,AOO1=30,OO1=2O1A=2r1=2,在RtOO2B中,OO2=2O2B,即2+1+r2=2r2,r2=3,在RtOO2C中,OO3=2O2C,即2+1+23+r3=2r3,r3=9=32,同理可得r4=27=33,所以r2018=1故答案为1点睛:找规律题需要记忆常见数列1,2,3,4n1,3,5,72n-12,4,6,82n2,4,8,16,321,4,9,16,252,6,12,20n(n+1)一般题目中的数列是利用常见数列变形而来,其中后一项

19、比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.17、m8【分析】对于反比例函数:当k0时,图象在第一、三象限;当k0时,图象在第二、四象限【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成18、【分析】设BP与圆交于点D,连接AD,根据同弧所对的圆周角相等,可得ACB=ADB,然后根据三角形外角的性质即可判断【详解】解:设BP与圆交于点D,连接ADACB=ADBADB是APD的外角ADBACB故答案为:【点睛】此题考查的是圆周角定理的推论和三角形外角的性质,掌握同

20、弧所对的圆周角相等和三角形的外角大于任何一个与它不相邻的内角是解决此题的关键三、解答题(共66分)19、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解【详解】解:(1),或,所以;(2),即,则,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键20、(2)yx2+x+2;(2)点P坐标为(2,3);存在点P(,2)或(,7)使得POCACO【分析】(2)与x轴、y轴分别交于点

21、B(4,0)、C(0,2),由题意可得即可求解;(2)过点P作PEOC,交BC于点E根据题意得出OCDPED,从而得出PEOC2,再根据 即可求解;当点P在y轴右侧,POAC时,POC=ACO抛物线与x轴交于A,B两点,点A在点B左侧,则点A坐标为(-2,0)则直线AC的解析式为y=2x+2直线OP的解析式为y=2x,即可求解;当点P在y轴右侧,设OP与直线AC交于点G,当CG=OG时,POC=ACO,根据等腰三角形三线合一,则CF=OF=2,可得:点G坐标为即可求解【详解】(2)yx+2与x轴、y轴分别交于点B(4,0)、C(0,2)由题意可得,解得:,抛物线的表达式为yx2+x+2;(2)

22、如图,过点P作PEOC,交BC于点E点D为OP的中点,OCDPED(AAS),PEOC2,设点P坐标为(m,m2+m+2),点E坐标为(m,m+2),则PE(m2+m+2)(m+2)m2+2m2,解得m2m22点P坐标为(2,3);存在点P,使得POCACO理由:分两种情况讨论如上图,当点P在y轴右侧,POAC时,POCACO抛物线与x轴交于A,B两点,点A在点B左侧,点A坐标为(2,0)直线AC的解析式为y2x+2直线OP的解析式为y2x,解方程组,解得:x(舍去负值)点P坐标为(,2)如图,当点P在y轴右侧,设OP与直线AC交于点G,当CGOG时POCACO,过点G作GFOC,垂足为F根据

23、等腰三角形三线合一,则CFOF2可得点G坐标为(,2)直线OG的解析式为y2x;把y2x代入抛物线表达式并解得x(不合题意值已舍去)点P坐标为(,7)综上所述,存在点P(,2)或(,7)使得POCACO【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形、等腰三角形的性质等,其中(2),要注意分类求解,避免遗漏21、1【分析】根据OA、OC的长度结合矩形的性质即可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论

24、【详解】解:OA=1,OC=2,四边形OABC是矩形,点B的坐标为(1,2),反比例函数y=的图象过点B,k=12=2设正方形ADEF的边长为a(a0),则点E的坐标为(1+a,a),反比例函数y=的图象过点E,a(1+a)=2,解得:a=1或a=-3(舍去),正方形ADEF的边长为1【点睛】本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解题的关键22、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即

25、 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, BOE DBC, OBE DBC90, OBC90,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.23、(1)5,;(2);(3)点的坐标为或【分析】(1)根据正方形及点A、B的坐标得到边长,即可求得AD,得到点C的坐标;(2)将点C的坐标代入解析式即可

26、;(3)设点到的距离为,根据的面积恰好等于正方形的面积求出h的值,再分两种情况求得点P的坐标.【详解】(1)点的坐标为,点的坐标为,AB=2-(-3)=5,四边形为正方形,AD=AB=5,BC=AD=5,BCy轴,C.故答案为:5,;把代入反比例函数得解得反比例函数的解析式为;(3)设点到的距离为正方形的面积,的面积 ,解得.当点在第二象限时,此时,点的坐标为当点在第四象限时,此时,点的坐标为综上所述,点的坐标为或【点睛】此题考查正方形的性质,待定系数法求反比例函数的解析式,利用反比例函数求点坐标,(3)中确定点P时不要忽略反比例函数的另一个分支.24、(1);(2)【分析】(1)先求出点F坐

27、标,利用待定系数法求出反比例函数的表达式;(2)利用点F的的横坐标为4,点的纵坐标为3,分别求得用k表示的BF、AE长,继而求得CF、CE长,从而求得结论【详解】(1)是的中点,点的坐标为,将点的坐标为代入得:,反比例函数的表达式;(2)点的横坐标为4,代入,点的纵坐标为3,代入,即,所以【点睛】此题是反比例函数与几何的综合题,主要考查了待定系数法,矩形的性质,锐角三角函数,掌握反比例函数的性质是解本题的关键25、(1), 或;(2)P;(3)【分析】(1)将点A(3,0),B(1,0)带入yax2bx2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y0;(2)

28、设出P点坐标,利用割补法将ACP 面积转化为,带入各个三角形面积算法可得出与m之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.【详解】解:(1)将A(3,0),B(1,0)两点带入yax2bx2可得:解得:二次函数解析式为.由图像可知,当或时y0;综上:二次函数解析式为,当或时y0;(2)设点P坐标为,如图连接PO,作PMx轴于M,PNy轴于N.PM=,PN=,AO=3.当时,所以OC=2,函数有最大值,当时,有最大值,此时;所以存在点,使ACP 面积最大.(3)存在,假设存在点Q使以 A、C、M、Q 为顶点的四边形是平行四边形若CM平行于x轴,如下图,有符合要求的两个点此时=CMx轴,点M、点C(0,2)关于对称轴对称,M(2,2),CM=2.由=;若CM不平行于x轴,如下图,过点M作MGx轴于点G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论