




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1在ABC中,C=90,B =30,则cos A的值是( )ABCD12如图,是的外接圆,是的直径,若的半径是,则( )ABCD3下列方程是一元二次方程的是()A2x3y+1B3x+yzCx25x1Dx2+204在平面直角坐标系xOy中,已知点M
2、,N的坐标分别为(1,2),(2,1),若抛物线y=ax2x+2(a0)与线段MN有两个不同的交点,则a的取值范围是()Aa1或aBaCa或aDa1或a5下列事件是必然事件的是( )A3个人分成两组,并且每组必有人,一定有2个人分在一组B抛一枚硬币,正面朝上C随意掷两个均匀的骰子,朝上面的点数之和为6D打开电视,正在播放动画片6二次函数yx2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()Ay+3By+3Cy3Dy37如图,在O中,点A、B、C在圆上,AOB100,则C()A45B50C55D608如图,RtABC中,A=90,ADBC于点D,若BD:CD=3:2,则
3、tanB=( )A23B32C69已知:如图,矩形ABCD中,AB2cm,AD3cm点P和点Q同时从点A出发,点P以3cm/s的速度沿AD方向运动到点D为止,点Q以2cm/s的速度沿ABCD方向运动到点D为止,则APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()ABCD10下列二次函数中,如果函数图像的对称轴是轴,那么这个函数是( )ABCD11一个凸多边形共有 20 条对角线,它是( )边形A6B7C8D912一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为(
4、)ABC 或D 或二、填空题(每题4分,共24分)13在直角坐标平面内,抛物线在对称轴的左侧部分是_的.14如图,D、E分别是ABC的边AB、BC上的点,DEAC,若SBDE:SCDE=1:3,则BE:BC的值为_15双十一期间,荣昌重百推出有奖销售促销活动,消费达到800元以上得一次抽奖机会,李老师消费1000元后来到抽奖台,台上放着一个不透明抽奖箱,里面放有规格完全相同的四个小球,球上分别标有1,2,3,4四个数字,主持人让李老师连续不放回抽两次,每次抽取一个小球,如果两个球上的数字均为奇数则可中奖,则李老师中奖的概率是_.16函数中,自变量的取值范围是_.17若,分别是一元二次方程的两个
5、实数根,则_18如图,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则_(填“”或“”或“=”)三、解答题(共78分)19(8分)如图,是的直径,是的切线,切点为,交于点,点是的中点.(1)试判断直线与的位置关系,并说明理由;(2)若的半径为2,求图中阴影部分的周长.20(8分)如图,AB是O的直径,点C是的中点,连接AC并延长至点D,使CDAC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交O于点H,连接BH(1)求证:BD是O的切线;(2)当OB2时,求BH的长21(8分)快乐的寒假临近啦!小明和小丽计划在寒假期间去镇江旅游.他们
6、选取金山(记为)、焦山(记为)、北固山(记为)这三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),请用“画树状图”或“列表”的方法求他俩都选择金山为第一站的概率.22(10分)如图,OAP是等腰直角三角形,OAP90,点A在第四象限,点P坐标为(8,0),抛物线yax2+bx+c经过原点O和A、P两点(1)求抛物线的函数关系式(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C、D两点,且BCAB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求CBN面积的最大值23(10分
7、)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球()请用列表法(或画树状图法)列出所有可能的结果;()求两次取出的小球标号相同的概率;()求两次取出的小球标号的和大于6的概率24(10分)如图,O过ABCD的三顶点A、D、C,边AB与O相切于点A,边BC与O相交于点H,射线AD交边CD于点E,交O于点F,点P在射线AO上,且PCD=2DAF(1)求证:ABH是等腰三角形;(2)求证:直线PC是O的切线;(3)若AB=2,AD=,求O的半径25(12分)如图,在中, ,以为直径作交于于于求证:是中点;求证:是的切线26如图,在RtABC
8、中,ACB90,AC6cm,BC8cm.动点M从点B出发,在线段BA上以每秒3cm的速度点A运动,同时动点N从点C出发,在线段CB上以每秒2cm的速度向点B运动,其中一点到达终点后,另一点也停止运动.运动时间为t秒,连接MN.(1)填空:BM= cm.BN= cm.(用含t的代数式表示)(2)若BMN与ABC相似,求t的值;(3)连接AN,CM,若ANCM,求t的值参考答案一、选择题(每题4分,共48分)1、A【分析】根据特殊角三角函数值,可得答案【详解】解:ABC中,C=90,B =30,A=90-30=60cos A=cos60=.故选:A【点睛】本题考查了特殊角的三角函数值,熟记特殊角三
9、角函数值是解题关键2、A【分析】连接CD,得ACD=90,由圆周角定理得B=ADC,进而即可得到答案【详解】连接CD,AD是直径,ACD=90,的半径是,AD=3,B=ADC,故选A【点睛】本题主要考查圆周角定理以及正弦三角函数的定义,掌握圆周角定理以及正弦三角函数的定义,是解题的关键3、C【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1逐一判断即可【详解】解:A、它不是方程,故此选项不符合题意;B、该方程是三元一次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、该方程不是整式方程,故此选项不符合题意;故选:C【点睛】此题主要考查
10、了一元二次方程定义,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为14、A【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】抛物线的解析式为y=ax1-x+1观察图象可知当a0时,x=-1时,y1时,满足条件,即a+31,即a-1;当a0时,x=1时,y1,且抛物线与直线MN有交点,满足条件,a,直线MN的解析式为y=-x+,由,消去y得到,3ax1-1x+1=0,0,a,a满足条件,综上所述,满足条件的a的值为a-1或a,故选A【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问
11、题,属于中考常考题型5、A【分析】根据必然事件是指在一定条件下,一定发生的事件,对每一选项判断即可【详解】解:A、3个人分成两组,并且每组必有人,一定有2个人分在一组是必然事件,符合题意,故选A;B、抛一枚硬币,正面朝上是随机事件,故不符合题意,B选项错误;C、随意掷两个均匀的骰子,朝上面的点数之和为6是随机事件,故不符合题意,C选项错误;D、打开电视,正在播放动画片是随机事件,故不符合题意,D选项错误;故答案选择D【点睛】本题考查的是事件的分类,事件分为必然事件,随机事件和不可能事件,掌握概念是解题的关键6、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案
12、.【详解】原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(1,1)新抛物线的解析式为: y1故选:D【点睛】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.7、B【分析】利用同弧所对的圆周角是圆心角的一半,求得圆周角的度数即可;【详解】解:,CAOB,AOB100,C50;故选:B【点睛】本题主要考查了圆周角定理,掌握圆周角定理是解题的关键.8、D【分析】首先证明ABDACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值【详解】在RtABC中,ADBC于点D,
13、ADB=CDAB+BAD=90,BAD+DAC=90,B=DACABDCADDB:AD=AD:DCBD:CD=3:2,设BD=3x,CD=2xAD=tanB=故选D【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长9、C【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解【详解】解:分三种情况讨论:(1)当0t1时,点P在AD边上,点Q在AB边上,S,此时抛物线经过坐标原点并且开口向上;(1)当1t15时,点P与点D重合,点Q在BC边上,S2,此时,函数值不变,函数图象为平行于t轴的线段;
14、(2)当15t25时,点P与点D重合,点Q在CD边上,S2(71t)t+函数图象是一条线段且S随t的增大而减小故选:C【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解10、C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax2+bx+c中,b=0,由选项入手即可【详解】二次函数的对称轴为y轴,则函数对称轴为x=0,即函数解析式y=ax2+bx+c中,b=0,故选:C【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质是解题的关键11、C【分析】根据多边形的对角线的条数公式列式进行计算即可
15、求解【详解】解:设该多边形的边数为n,由题意得:,解得:(舍去)故选:C【点睛】本题主要考查了多边形的对角线公式,熟记公式是解题的关键12、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.二、填空题(每题4分,共24分)13、下降【分析】由抛物线解析式可求得其开口方向,再结合二次函数的增减性则可求得答案【详解】解:在y=(x-1)2-3中,a=10,抛物线开口向上,在对称轴左侧部分y随x
16、的增大而减小,即图象是下降的,故答案为:下降【点睛】本题主要考查二次函数的性质,利用二次函数的解析式求得抛物线的开口方向是解题的关键14、1:4【解析】由SBDE:SCDE=1:3,得到,于是得到【详解】解: 两个三角形同高,底边之比等于面积比. 故答案为【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键15、【分析】画树状图展示所有12种等可能的结果数,找出两个球上的数字均为奇数的结果数,然后根据概率公式求解【详解】画树状图为:共有12种等可能的结果数,其中两个球上的数字均为奇数的结果数为2,所以李老师中奖的概率=故答案为:【点睛】本题考
17、查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率16、【分析】根据分式有意义的条件是分母不为0;可得关系式x10,求解可得自变量x的取值范围【详解】根据题意,有x10,解得:x1故答案为:x1【点睛】本题考查了分式有意义的条件掌握分式有意义的条件是分母不等于0是解答本题的关键17、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得,故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题18、=【分析】连接OP、OQ,根据反比例函数的几
18、何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则点P、点Q在反比例函数的图像上,四边形OMPA、ONQB是矩形,OM=AP,OB=NQ,;故答案为:=.【点睛】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.三、解答题(共78分)19、 (1)直线与相切;理由见解析;(2).【分析】(1)连接OE、OD,根据切线的性质得到OAC=90,根据三角形中位线定理得到OEBC,证明AOEDOE,根据全等三角形的性质、切线的判定定理证明;(2)根据切线长定理可得DE=AE=2.5,由圆周角定理可得AOD=100,然后根据弧
19、长公式计算弧AD的长,从而可求得结论【详解】解:(1)直线DE与O相切, 理由如下:连接OE、OD,如图,AC是O的切线,ABAC,OAC=90,点E是AC的中点,O点为AB的中点,OEBC,1=B,2=3,OB=OD,B=3,1=2,在AOE和DOE中OA=OD1=2OE=OE,AOEDOE(SAS)ODE=OAE=90,DEOD,OD为O的半径,DE为O的切线;(2)DE、AE是O的切线,DE=AE,点E是AC的中点,DE=AE=AC=2.5,AOD=2B=250=100,阴影部分的周长=【点睛】本题考查的是切线的判定与性质、全等三角形的判定和性质、三角形的中位线、切线长定理、弧长的计算,
20、掌握切线的性质与判定、弧长公式是解题的关键20、(1)证明见解析;(2)BH【分析】(1)先判断出AOC=90,再判断出OCBD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【详解】(1)连接OC,AB是O的直径,点C是的中点,AOC90,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90,ABBD,点B在O上,BD是O的切线;(2)由(1)知,OCBD,OCEBFE,OB2,OCOB2,AB4,BF3,在RtABF中,ABF90,根据勾股定理得,AF5,SABFABBFAFBH,ABBFAFBH,435BH,BH【点睛】此
21、题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键21、 “画树状图”或“列表”见解析;(都选金山为第一站).【分析】画树形图得出所有等可能的情况数,找出小明和小丽都选金山为第一站的情况数,即可求出所求的概率【详解】画树状图得:共有9种等可能的结果,小明和小丽都选金山为第一站的只有1种情况,(都选金山为第一站)【点睛】本题考查的是用列表法或树状图法求概率树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比22、(1);(2);(3).【分析】(1)先根据是等腰直角三角形,和点P的坐标求出点A的坐标,再利用待定
22、系数法即可求得;(2)设点,如图(见解析),过点C作CH垂直y轴于点H,过点A作AQ垂直y轴于点Q,易证明,可得,则点C坐标为,将其代入题(1)中的抛物线函数关系式即可得;(3)如图,延长NM交CH于点E,则,先通过点B、C求出直线BC的函数关系式,因点N在抛物线上,则设,则可得点M的坐标,再根据三角形的面积公式列出等式,利用二次函数的性质求最值即可.【详解】(1)是等腰直角三角形,点P坐标为则点A的坐标为将点O、A、B三点坐标代入抛物线的函数关系式得:,解得:故抛物线的函数关系式为:;(2)设点,过点C作CH垂直y轴于点H,过点A作AQ垂直y轴于点Q,又故点C的坐标为将点C的坐标代入题(1)
23、的抛物线函数关系式得:,解得:故点B的坐标为;(3)如图,延长NM交CH于点E,则设直线BC的解析式为:,将点,点代入得:解得:则直线BC的解析式为:因点N在抛物线上,设,则点M的坐标为的面积即整理得:又因点M是线段BC上一点,则由二次函数的性质得:当时,y随x的增大而增大;当时,y随x的增大而减小故当时,取得最大值.【点睛】本题是一道较好的综合题,考查了待定系数法求二次函数的解析式、三角形全等的判定定理与性质、二次函数图象的性质,熟练掌握并灵活运用这些知识点是解题关键.23、()画树状图见解析; ()两次取出的小球标号相同的概率为;()两次取出的小球标号的和大于6的概率为 【分析】()根据题
24、意可画出树状图,由树状图即可求得所有可能的结果()根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案()根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案【详解】解:()画树状图得:()共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,两次取出的小球标号相同的概率为=;()共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,两次取出的小球标号的和大于6的概率为 【点睛】此题考查列表法与树状图法求概率的知识此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于
25、两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比24、 (1)见解析;(2)见解析;(3) 【解析】(1)要想证明ABH是等腰三角形,只需要根据平行四边形的性质可得B=ADC,再根据圆内接四边形的对角互补,可得ADC+AHC=180,再根据邻补角互补,可知AHC+AHB=180,从而可以得到ABH和AHB的关系,从而可以证明结论成立;(2)要证直线PC是O的切线,只需要连接OC,证明OCP=90即可,根据平行四边形的性质和边AB与O相切于点A,可以得到AEC的度数,又PCD=2DAF,DOF=2DAF,COE=DOF,通过转化可以得到OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到AED=90,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长【详解】(1)证明:四边形ADCH是圆内接四边形,ADC+AHC=180,又AHC+AHB=180,ADC=AHB,四边形ABCD是平行四边形,ADC=B,AHB=B,AB=AH,ABH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上海仓储设施租赁合同
- 2025版药店房屋租赁合同范本
- 2025屋顶设计合同模板
- 2025年合同协议书范本模板
- 2025年技术转让委托的合同
- 2025个人汽车贷款合同延期所需提交的材料
- 2025 AA助学贷款合同协议
- 2025茶叶销售代理合同模板
- 2025标准的劳动合同范本
- 2025家教中介服务合同模板
- 员工外派学习合同范本
- 翡翠鉴定培训课件
- 安徽省2025年中考语文作文评分标准
- GB/T 45242-2025保健食品中肌醇的测定
- 污水处理设施运维服务投标方案(技术标)
- 初级经济师工商管理专业知识与实务要点总结
- 股东查账申请书
- PEP人教版小学英语三年级下册单词表
- 【中考真题】2024年广东省广州市中考物理试卷(附答案)
- 护理带教老师选拔
- DBJ33T 1020-2022 建设工程地质钻探安全技术规程
评论
0/150
提交评论