2022年北京市东城区第十一中学数学高二第二学期期末学业水平测试试题含解析_第1页
2022年北京市东城区第十一中学数学高二第二学期期末学业水平测试试题含解析_第2页
2022年北京市东城区第十一中学数学高二第二学期期末学业水平测试试题含解析_第3页
2022年北京市东城区第十一中学数学高二第二学期期末学业水平测试试题含解析_第4页
2022年北京市东城区第十一中学数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题

2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数aA(-3,-2)(-1,0)B(-3,-2)C(-2老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A随机抽样B分层抽样C系统抽样D以上都是3某人射击一次命中目标的概率为,则此人射击6次,3次命中且恰有2次连续命中的概率为( )ABCD4已知双曲线的一个焦点坐标为,且双曲线的两条渐近线互相垂直,则该双曲线的方程为( )ABCD或5已知

3、函数 在上单调递减,则的取值范围是( )ABCD6下面几种推理过程是演绎推理的是( )A在数列|中,由此归纳出的通项公式B由平面三角形的性质,推测空间四面体性质C某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则7已知正项数列an的前n项和为Sn,若an和都是等差数列,且公差相等,则a6()A B C. D18 ( )ABCD9若f(x)=ln(x2-2ax+1+a)在区间上递减,则实数的取值范围为( )ABCD10某班级要从四名男生、两名女生中选派四人参加某次社区服务,则所选的四人中至少有一

4、名女生的选法为( )ABCD11某电子元件生产厂家新引进一条产品质量检测线,现对检测线进行上线的检测试验:从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回.重复次这样的试验,那么“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率是( )ABCD12如果点位于第三象限,那么角所在象限是( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13若随机变量,且,则_14在全运会期间,4名志愿者被安排参加三个不同比赛项目的接待服务工作,则每个项目至少有一人参加的安排方法有_15有位同学参加学校组织的政治、地理、化学、生物门活动

5、课,要求每位同学各选一门报名(互不干扰),则地理学科恰有人报名的方案有_16已知,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)()(1)当时,求的单调区间;(2)若,存在两个极值点,试比较与的大小;(3)求证:(,)18(12分)已知函数.(1)若不等式的解集,求实数的值.(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.19(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)奇数项的二项式系数和;(3)求系数绝对值最大的项.20(12分)从甲地到乙地要经过个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,()

6、设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和均值()若有辆车独立地从甲地到乙地,求这辆车共遇到个红灯的概率21(12分)已知函数.(1)画出函数的大致图象,并写出的值域;(2)若关于的不等式有解,求实数的取值范围.22(10分)随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:年份20142015201620172018年份代码12345省一本线505500525500530录取平均分533534566547580录取平均分与省一本线分差y2834414750(1)根据上表数据可知,y与t之间存在线性相关关系,

7、求y关于t的线性回归方程;(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)参考公式:,.参考数据:,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得f(x)=x(2+x)ex,函数f(x)=x2ex在区间(a,a+1)【详解】f(x)=2xe函数f(x)=x2ex在区间(a,a+1)上存在

8、极值点令f(x)=0,解得x=0或-2a0a+1,或a-2a+1,解得:-1a0,或-3a-2,实数a的取值范围为(-3,-2)(-1,0)故选【点睛】本题考查了利用导数研究函数的极值,考查了推理能力与计算能力,意在考查转化与划归思想的应用以及综合所学知识解答问题的能力,属于中档题2、C【解析】对50名学生进行编号,分成10组,组距为5,第一组选5,其它依次加5,得到样本编号.【详解】对50名学生进行编号,分成10组,组距为5,第一组选5,从第二组开始依次加5,得到样本编号为:5,10,15,20,25,30,35,40,45,50,属于系统抽样.【点睛】本题考查系统抽样的概念,考查对概念的理

9、解.3、C【解析】根据n次独立重复试验中恰好发生k次的概率,可得这名射手射击命中3次的概率,再根据相互独立事件的概率乘法运算求得结果.【详解】根据射手每次射击击中目标的概率是,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为,恰有两次连续击中目标的概率为,故此人射击6次,3次命中且恰有2次连续命中的概率为.故选B【点睛】本题主要考查独立重复试验的概率问题,熟记概念和公式即可,属于常考题型.4、A【解析】分析:先利用双曲线的渐近线相互垂直得出该双曲线为等轴双曲线,再利用焦点位置确定双曲线的类型,最后利用几何元素间的等量关系进行求解.详解:因为该双曲线的两条渐近线互相垂直,所以该双曲线为

10、等轴双曲线,即,又双曲线的一个焦点坐标为,所以,即,即该双曲线的方程为.故选D.点睛:本题考查了双曲线的几何性质,要注意以下等价关系的应用:等轴双曲线的离心率为,其两条渐近线相互垂直.5、A【解析】等价于在上恒成立,即在上恒成立,再构造函数并求g(x)的最大值得解.【详解】在上恒成立,则在上恒成立,令,所以在单调递增,故g(x)的最大值为g(3)=.故.故选A【点睛】本题主要考查利用导数研究函数的单调性,考查利用导数研究不等式的恒成立问题,属于基础题.6、D【解析】分析:演绎推理是由普通性的前提推出特殊性结论的推理其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得

11、出正确选项详解:A在数列an中,a1=1,通过计算a2,a3,a4由此归纳出an的通项公式”是归纳推理B选项“由平面三角形的性质,推出空间四边形的性质”是类比推理C选项“某校高二(1)班有55人,高二(2)班有52人,由此得高二所有班人数超过50人”是归纳推理;D选项选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“A与B是两条平行直线的同旁内角”,结论是“A+B=180,是演绎推理.综上得,D选项正确故选:D 点睛:本题考点是进行简单的演绎推理,解题的关键是熟练掌握演绎推理的定义及其推理形式,演绎推理是由普通性的前提推出特殊性结论的推理演绎推理主要形式有三段论,其结构是大前

12、提、小前提、结论7、B【解析】设等差数列an和的公差为d,可得an=a1+(n1)d,=+(n1)d,于是=+d,=+2d,化简整理可得a1,d,即可得出【详解】设等差数列an和的公差为d,则an=a1+(n1)d,=+(n1)d,=+d,=+2d,平方化为:a1+d=d2+2d,2a1+3d=4d2+4d,可得:a1=dd2,代入a1+d=d2+2d,化为d(2d1)=0,解得d=0或d=0时,可得a1=0,舍去,a1=a6=故答案为:B【点睛】(1)本题主要考查等差数列的通项和前n项和,意在考查学生岁这些知识的掌握水平和分析推理计算能力.(2)本题的关键是利用=+d,=+2d求出d.8、C

13、【解析】直接利用复数代数形式的乘除运算化简,即可得到答案【详解】由,故选C【点睛】本题主要考查了复数代数形式的乘除运算,着重考查了运算与求解能力,属于基础题9、B【解析】由外函数对数函数是增函数,可得要使函数在上递减,需内函数二次函数的对称轴大于等于1,且内函数在上的最小值大于0,由此联立不等式组求解【详解】解:令,其对称轴方程为,外函数对数函数是增函数,要使函数在上递减,则,即:实数的取值范围是故选:【点睛】本题主要考查了复合函数的单调性以及单调区间的求法对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,

14、是中档题10、A【解析】所选的四人中至少有一名女生的选法为本题选择A选项.11、B【解析】取出的个电子元件中有个正品,个次品的概率,重复次这样的试验,利用次独立重复试验中事件恰好发生次的概率计算公式能求出“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率【详解】从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回,取出的个电子元件中有个正品,个次品的概率,重复次这样的试验,那么“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率是:.故选:B【点睛】本题考查了次独立重复试验中事件恰好发生次的概率计算公式,属于基础题.12、B【解析】由二倍角的正弦公式以及

15、已知条件得出和的符号,由此得出角所在的象限.【详解】由于点位于第三象限,则,得,因此,角为第二象限角,故选B.【点睛】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,得,两个式子相加,根据正态分布的对称性和概率和为1即可得到答案【详解】由随机变量,且,根据正态分布的对称性得且正态分布的概率和为1,得.故答案为0.15【点睛】本题考查了正态分布曲线的特点及曲线所表示的意义,属于基础题14、36【解析】由题意结合排列组合公

16、式整理计算即可求得最终结果.【详解】每个项目至少有一人参加,则需要有一个项目2人参加,其余的两个项目每个项目一人参加,结合排列组合公式可知,满足题意的安排方法共有:种.【点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的求法15、【解析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得

17、到答案【详解】由题意,先在4位同学中选2人选地理学科,共种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共339种选法,故地理学科恰有2人报名的方案有691种选法,故答案为:1【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题16、【解析】先对函数求导,然后求出,进而求出答案。【详解】由题可得,令,则,解得,所以,则【点睛】本题考查导函数,解题的关键是先求出,属于一般题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)递减,递

18、增(2)(3)详见解析【解析】试题分析:(1)求出函数的定义域,求出导数,求得单调区间,即可得到极值;(2)求出导数,求得极值点,再求极值之和,构造当0t1时,g(t)=2lnt+-2,运用导数,判断单调性,即可得到结论;(3)当0t1时,g(t)=2lnt+-20恒成立,即lnt+-10恒成立,设t=(n2,nN),即ln+n-10,即有n-1lnn,运用累加法和等差数列的求和公式及对数的运算性质,即可得证试题解析:(),定义域,递减,递增(),(也可使用韦达定理)设,当时,当时,在上递减,即恒成立综上述()当时,恒成立,即恒成立设,即,考点:利用导数研究函数的极值;导数在最大值、最小值问题

19、中的应用18、(1) (2)【解析】(1)由根据绝对值不等式的解法列不等式组,结合不等式的解集,求得的值.(2)利用绝对值不等式,证得的最小值为4,由此求得的取值范围.【详解】(1)函数,故不等式,即,即,求得.再根据不等式的解集为.可得,实数.(2)在(1)的条件下,存在实数使成立,即,由于,的最小值为2,故实数的取值范围是.【点睛】本小题主要考查根据绝对值不等式的解集求参数,考查利用绝对值不等式求解存在性问题,考查化归与转化的数学思想方法,属于中档题.19、 (1); (2);(3).【解析】写出二项式的通项公式.(1)根据二项式的通项公式可以求出此问;(2)根据奇数项的二项式系数和公式可

20、以直接求出此问题;(3)设出系数绝对值最大的项为第(r +1)项,根据二项式的通项公式,列出不等式组,解这个不等式组即可求出此问题.【详解】二项式的通项公式为:.(1)第3项的二项式系数为,第三项的系数为;(2)奇数项的二项式系数和;(3)设系数绝对值最大的项为第(r +1)项,则,又,所以r =2.系数绝对值最大的项为【点睛】本题考查了二项式通项公式的应用,考查了奇数项的二项式系数和公式,考查了数学运算能力.20、 (1)见解析;(2).【解析】试题分析:表示一辆车从甲地到乙地遇到红灯的个数, 的所有可能取值为0,1,2,3.分别求出相应的概率值,列出随机变量的分布列并计算数学期望,表示第一辆车遇到红灯的个数,表示第二辆车遇到红灯的个数,这2辆车共遇到1个红灯就是包括第一辆遇到1次红灯且第2辆没遇上和第一辆没遇上红灯且第2辆遇上1次红灯两个事件的概率的和.试题解析:()解:随机变量的所有可能取值为0,1,2,3.,.所以,随机变量的分布列为0123随机变量的数学期望.()解:设表示第一辆车遇到红灯的个数,表示第二辆车遇到红灯的个数,则所求事件的概率为.所以,这2辆车共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论