中考数学一轮复习《课题17:二次函数的综合应用》课件(同名310)_第1页
中考数学一轮复习《课题17:二次函数的综合应用》课件(同名310)_第2页
中考数学一轮复习《课题17:二次函数的综合应用》课件(同名310)_第3页
中考数学一轮复习《课题17:二次函数的综合应用》课件(同名310)_第4页
中考数学一轮复习《课题17:二次函数的综合应用》课件(同名310)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题17二次函数的综合应用基础知识梳理考点一 利用二次函数与一元二次方程的关系解决实际问题考点二 利用二次函数解决其他综合性问题中考题型突破题型一 利用二次函数与一元二次方程的关系解决实际问题题型二 考查利用二次函数解决综合性问题易错 不能根据实际问题的意义对解方程所得的根正确取舍易混易错突破考点年份题号分值考查方式二次函数的应用20182611以解答题的形式,与反比例函数相结合,考查二次函数的综合应用20172612以解答题的形式,与一次函数、反比例函数相结合,考查二次函数的应用20162612以解答题的形式,以求函数图象最高点的坐标为问题情境,考查二次函数的应用备考策略:二次函数的应用是我

2、省中考的常考内容,主要内容包括利用待定系数法确定二次函数表达式,二次函数与一元二次方程的关系,二次函数的最大(小)值等,这些知识常隐含于实际问题中,题目的难度较大.河北考情探究考点一利用二次函数与一元二次方程的关系解决实际问题根据二次函数与一元二次方程的关系,可以解决一些实际问题,基本方法为:当已知某个函数值时,通过解一元二次方程,即可求得相应的自变量的值.基础知识梳理考点二利用二次函数解决其他综合性问题二次函数与平面几何、一次函数、反比例函数等知识相结合,可以解决一些综合性的实际问题,基本方法是综合运用上述知识,根据有关各量之间的关系,得到一个二次函数关系式,则问题可转化为解二次函数问题.题

3、型一利用二次函数与一元二次方程的关系解决实际问题该题型主要考查利用二次函数与一元二次方程的关系解决实际问题,解决这类问题时,可把二次函数、函数值、自变量的值等转化为解一元二次方程问题,由此即可达到解题的目的.中考题型突破典例1(2017山东青岛)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=-x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面OA的距离为m.(1)求该抛物线的函数表达式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么

4、这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米? 答案(1)根据题意,得B(0,4),C.把B(0,4),C的坐标代入y=-x2+bx+c,得解得抛物线的函数表达式为y=-x2+2x+4. y=-x2+2x+4=-(x-6)2+10,D(6,10).拱顶D到地面OA的距离为10 m.(2)根据题意,货运汽车最外侧与地面OA的交点坐标为(2,0)或(10,0),当x=2或x=10时,y=-22+22+4=或y=-102+210+4=. m6 m这辆货车能安全通过.(3)令y=8,解方程-(x-6

5、)2+10=8,得x1=6+2,x2=6-2,x1-x2=4.答:两排灯的水平距离最小是4 m.名师点拨本题的解题技巧是转化,如在(2)中,把集装箱的宽度为4米转化为货运汽车最外侧与地面OA的交点为坐标(2,0)或(10,0),然后求抛物线上x=2时的y值,则问题进一步转化为比较此时的y值与6 m(集装箱的高度)的大小,至此即可得到“能否通过”的答案.变式训练1(2018石家庄模拟)小明为了检测自己实心球的训练情况,在一次投掷的测试中,实心球经过的抛物线轨迹如图所示,其中出手点A的坐标为,球在最高点B的坐标为.(1)求抛物线的函数表达式;(2)在小明练习实心球的正前方距离投掷点7米处有一个身高

6、1.2米的小朋友在玩耍,问该小朋友是否有危险(如果实心球在小孩头顶上方飞出为安全,否则视为危险),请说明理由.答案(1)设抛物线的函数表达式为y=a(x-3)2+.点A在此抛物线上,=a(0-3)2+,解得a=-.抛物线的函数表达式为y=-(x-3)2+.(2)有危险.理由如下:将x=7代入y=-(x-3)2+,得y=-(7-3)2+=1.11.2, 身高1.2米的小朋友有危险.题型二考查利用二次函数解决综合性问题该题型主要考查利用二次函数解决综合性问题,在这类问题中,二次函数常与方程、不等式、图形的全等、相似等知识相结合,难度较大.典例2(2016沧州模拟)如图,抛物线y=-x2+bx+c与

7、直线AB相交于A(-1,0),B(2,3)两点,与y轴交于点C,其顶点为D.(1)求抛物线的函数表达式;(2)作直线x=3,在直线上取一点M(3,m),求使MC+MD的值最小时m的值;(3)若P是该抛物线上位于直线AB上方的一动点,求APB面积的最大值.答案(1)将A,B点的坐标代入y=-x2+bx+c,得解得抛物线的函数表达式为y=-x2+2x+3.(2)y=-x2+2x+3=-(x-1)2+4,D(1,4),C(0,3).作点C关于直线x=3的对称点C,则点C的坐标为(6,3).连接CD,CD交直线x=3于M点,连接MC,此时MC+MD的值最小,如图所示.设直线CD的表达式为y=kx+b(

8、k0),将点C,D的坐标代入,得解得直线CD的表达式为y=-x+.当x=3时,y=-3+=,M.故使MC+MD的值最小时m的值为.(3)作PEy轴交AB于点E,如图所示.设直线AB的表达式为y=px+q(p0),将点A,B的坐标代入,得解得直线AB的表达式为y=x+1.设E(n,n+1),则P(n,-n2+2n+3),PE=-n2+2n+3-(n+1)=+.SAPB=PE(xB-xA)=2-(-1)=-+.当n=时,APB的面积有最大值,最大值为.名师点拨本题的解题思路为:(1)因为抛物线经过已知点A,B,利用待定系数法即可求得函数表达式;(2)根据对称性,可得到点C关于直线x=3的对称点C的

9、坐标,根据两点之间线段最短,可确定点M,利用待定系数法可求得直线CD的表达式,进而求得m的值;(3)作PEy轴交AB于点E,则APB的面积=APE的面积+BPE的面积,由此即可得出结论.其中,(3)的求解有两个小小的技巧:一是作辅助线PE,其目的是分割APB,使之转化为SAPB=PE(xB-xA);二是用含n的代数式表示线段PE的长,从而SAPB可用含n的式子表示,进而得出结论.变式训练2(2018唐山)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于点A和B(4,m),点P是线段AB上异于A,B的动点,过点P作PCx轴于点D,交抛物线于点C.(1)求抛物线的函数表达式;(2)是

10、否存在这样的点P,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由.答案(1)点B(4,m)在直线y=x+2上,m=4+2=6,B(4,6).点A,B(4,6)都在抛物线y=ax2+bx+6上,解得抛物线的函数表达式为y=2x2-8x+6.(2)存在设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2-8n+6),PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2+.n0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( C )A.40 m/sB.20 m/sC.10 m/sD.5 m/s随堂巩固检测2.一个运动员打高尔夫球,若球的飞行高度y(m)

11、与水平距离x(m)之间的函数表达式为y=-(x-30)2+10,则高尔夫球第一次落地时距离运动员( D )A.10 mB.20 mC.30 mD.60 m 3.在底边长BC=20 cm,高AM =12 cm的三角形铁板ABC 上,要截一块矩形铁板EFGH,使点E、H分别在AB、AC上,且EHBC,如图所示.当矩形铁板的面积为 cm2时,矩形的边EF的长为( D )A.2 cmB.6 cmC.10 cmD.2 cm或10 cm4.(2018石家庄模拟)如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15,点B在抛物线y=ax2(a0)的图象上,则a的值为( B )A.-B.-C.

12、-2D.- 5.如图,某公路隧道横截面为抛物线,其最大高度为8米,以隧道底部宽AB所在直线为x轴,以AB的垂直平分线为y轴建立如图所示的平面直角坐标系,抛物线的表达式为y=-x2+b,则隧道底部宽AB=8米. 6.某体育公园的圆形喷水池的水柱形状如图所示.如果曲线APB表示落点B离点O最远的一条水流(如图),其上的水珠的高度y(米)关于水平距离x(米)的函数表达式为y=-x2+4x+,那么圆形喷水池的半径至少为米,才能使喷出的水流不落在水池外.7.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8 m,他在不弯腰的情况下,在棚内的横向活动范围是3m. 8.科幻小说实验室的故事中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/-4-20244.5植物每天高度增长量y/mm414949412519.75由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,如果这个函数是二次函数,(1)求y与x的函数关系式;(2)当温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250 mm,那么实验室的温度x应控制在哪个范围内?答案(1)设y与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论