江苏省盐城市滨海县2021-2022学年高二数学第二学期期末调研试题含解析_第1页
江苏省盐城市滨海县2021-2022学年高二数学第二学期期末调研试题含解析_第2页
江苏省盐城市滨海县2021-2022学年高二数学第二学期期末调研试题含解析_第3页
江苏省盐城市滨海县2021-2022学年高二数学第二学期期末调研试题含解析_第4页
江苏省盐城市滨海县2021-2022学年高二数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的展开式中的系数为( )A1B9C10D112设,是两个不同的平面,是直线且“”是“”的( )A充分而不必要条件

2、B必要而不充分条件C充分必要条件D既不充分也不必要条件3现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.不同取法的种数为ABCD4已知三角形的面积是,则b等于( )A1B2或1C5或1D或15直线的斜率为( )ABCD6已知,若的必要条件是,则a,b之间的关系是( )ABCD7在中,则( )ABCD8如图梯形ABCD中,ADBC,ABC90,ADBCAB234,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:DFBC;BDFC;平面DBF平面BFC;平面DCF平面BFC. 则在翻折过程中,可能成立

3、的结论的个数为( ) A1B2C3D49下列命题正确的是( )A进制转换:B已知一组样本数据为1,6,3,8,4,则中位数为3C“若,则方程”的逆命题为真命题D若命题:,则:,10已知直三棱柱中,底面为等腰直角三角形,点在上,且,则异面直线与所成角为( )ABCD11某市交通部门为了提高某个十字路口通行效率,在此路口增加禁止调头标识(即车辆只能左转、右转、直行),则该十字路口的行车路线共有( )A24种B16种C12种D10种12在等差数列中,如果,且,那么必有,类比该结论,在等比数列中, 如果,且,那么必有( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则_.14

4、已知函数在时有极值,则_.15_.16高一、高二、高三三个年级共有学生1500人,其中高一共有学生600人,现用分层抽样的方法抽取30人作为样本,则应抽取高一学生数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某运输公司有名驾驶员和名工人,有辆载重量为吨的甲型卡车和辆载重量为吨的乙型卡车.某天需运往地至少吨的货物,派用的车需满载且只运送一次.派用的每辆甲型卡车需配名工人,运送一次可得利润元:派用的每辆乙型卡车需配名工人,运送一次可得利润元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润多少?18(12分)如图,在四棱锥中,平面,四边形为正方形, 是的中

5、点,是的中点.(1)求此四棱锥的体积;(2)求证:平面;(3)求证:平面平面19(12分)已知命题,使;命题,使.(1)若命题为假命题,求实数的取值范围;(2)若为真命题,为假命题,求实数的取值范围.20(12分)已知函数.(1)若,求的零点个数;(2)若,证明:,.21(12分)某企业响应省政府号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表是设备改造后的样本的频数分布表.表:设备改造后样本的频数分布表质量指标值频

6、数(1)完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;设备改造前设备改造后合计合格品不合格品合计(2)根据频率分布直方图和表 提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)企业将不合格品全部销毁后,根据客户需求对合格品进行登记细分,质量指标值落在内的定为一等品,每件售价元;质量指标值落在或内的定为二等品,每件售价元;其它的合格品定为三等品,每件售价元.根据表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列

7、和数学期望.附:22(10分)已知定义域为R的函数f(x)是奇函数,且aR(1)求a的值;(2)设函数g(x),若将函数g(x)的图象向右平移一个单位得到函数h(x)的图象,求函数h(x)的值域参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据组合的知识可求展开式的含和的项,分别乘以的常数项和一次项,合并同类项即可求解.【详解】因为展开式中含项的系数为,含项的系数为,乘以后含项的系数为,故选D.【点睛】本题主要考查了用组合知识研究二项展开式的特定项的系数,属于中档题.2、B【解析】试题分析:,得不到,因为可能相交,只

8、要和的交线平行即可得到;,和没有公共点,即能得到;“”是“”的必要不充分条件故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.3、C【解析】试题分析:3张卡片不能是同一种颜色,有两种情形:三种颜色或者两种颜色,如果是三种颜色,取法数为,如果是两种颜色,取法数为,所以取法总数为,故选C考点:分类加法原理与分步乘法原理【名师点晴】(1)对于一些比较复

9、杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步4、D【解析】由三角形面积公式,计算可得的值,即可得B的值,结合余弦定理计算可得答案.【详解】根据题意:三角形的面积是,即,又由,则则或,若则此时则;若,则,此时则;故或.故选:D.【点睛】本题考查三角形的面积公式,考查余弦定理在解三角形中的应用,难度较易.5、A【解析】将直线方程化为斜截式,可得出直线的斜率【详解】将直线方程化为斜截式可得,因此,该直线的斜率为,故选A【点睛】本题考查直线斜率的计算,计算直线斜率有如下几

10、种方法:(1)若直线的倾斜角为且不是直角,则直线的斜率;(2)已知直线上两点、,则该直线的斜率为;(3)直线的斜率为;(4)直线的斜率为.6、A【解析】试题分析:不等式的解集为,不等式的解集为,根据题意可知是的子集,所以有,故选A考点:绝对值不等式,充要条件的判断7、D【解析】利用余弦定理计算出的值,于此可得出的值【详解】,由余弦定理得,因此,故选D【点睛】本题考查利用余弦定理求角,解题时应该根据式子的结构确定对象角,考查计算能力,属于基础题8、B【解析】分析:利用空间中线线、线面、面面间的位置关系求解.详解:对于:因为BCAD,AD与DF相交不垂直,所以BC与DF不垂直,则错误;对于:设点D

11、在平面BCF上的射影为点P,当BPCF时就有BDFC, 而AD:BC:AB2:3:4可使条件满足,所以正确;对于:当点P落在BF上时, DP平面BDF,从而平面BDF平面BCF,所以正确;对于:因为点D的投影不可能在FC上,所以平面DCF平面BFC不成立,即错误故选B.点睛:本题考查命题真假的判断,解题时要认真审题,注意空间思维能力的培养.9、A【解析】根据进制的转化可判断A,由中位数的概念可判断B,写出逆命题,再判断其真假可判断C.根据全称命题的否定为特称命题,可判断D.【详解】A .,故正确.B. 样本数据1,6,3,8,4,则中位数为4.故不正确.C . “若,则方程”的逆命题为: “方

12、程,则”,为假命题,故不正确.D. 若命题:,.则:,故不正确.故选:A【点睛】本题考查了进制的转化、逆命题,中位数以及全称命题的否定,属于基础题.10、C【解析】根据题意将直三棱柱补成长方体,由 ,然后再过点作直线的平行线,从而可得异面直线与所成角.【详解】由条件将直三棱柱补成长方体,如图.由条件,设点为的中点,连接.则,所以(或其补角)为异面直线与所成角.在中, 所以为等边三角形,所以故选:C【点睛】本题考查异面直线所成角,要注意补形法的应用,属于中档题.11、C【解析】根据每个路口有种行车路线,一个十字路口有个路口, 利用分步乘法计数原理即可求解.【详解】每个路口有种行车路线,一个十字路

13、口有个路口,故该十字路口行车路线共有(种)故选:C【点睛】本题考查了分布乘法计数原理,属于基础题.12、D【解析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论. 详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D. 点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:找出等差数列与等比数列之间的相似性或一致性;用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想). 二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】利用分段函数的性质求解【详解】解:

14、,故答案为:1【点睛】本题考查函数值的求法,解题时要认真审题,注意分段函数的性质的灵活运用14、【解析】函数在时有极值,由,代入解出再检验即可。【详解】由题意知又在时有极值,所以或当时,与题意在时有极值矛盾,舍去故,故填【点睛】本题考查根据函数的极值点求参数,属于中档题,需要注意的是求解的结果一定要检验其是否满足题意。15、【解析】将定积分分为两部分,前一部分根据奇函数积分为0,后一部分转化为几何面积得到答案.【详解】为奇函数 表示半径为3的半圆面积:为故答案为:【点睛】本题考查了定积分的计算,根据奇函数的性质可以简化运算.16、12【解析】由题得高一学生数为,计算即得解.【详解】由题得高一学

15、生数为.故答案为:12【点睛】本题主要考查分层抽样,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、安排辆甲型车,辆乙型车利润最大,最大利润元.【解析】设甲型车辆,乙型车辆,根据题意列不等式组,画可行域,将目标函数化为斜截式,比较斜率,找到最优解,解方程组得最优解的坐标,代入目标函数即可得到.【详解】解:设甲型车辆,乙型车辆,则,即设利润为,则,化成斜截式可得,因为,由图可知,在点处取得最大值,联立解得,,所以的最大值为,所以,安排辆甲型车,辆乙型车利润最大,最大利润元.【点睛】本题考查了线性规划求最大值,属于中档题.18、

16、(1);(2)证明见解析;(3)证明见解析【解析】(1) 由题意,根据棱锥的体积,即求解该四棱锥的体积;(2)在上取中点为,连接和,证得,利用线面平行的判定定理,即可求解. (3),得到平面,进而得,利用线面垂直的判定定理,证得平面,再由面面垂直的判定定理,即可得到平面平面【详解】(1) 四棱锥的体积.(2)证明:在上取中点为,连接和,则易得,且,且故四边形为平行四边形,故,又面,面故面.(3) 证明:, ,又,平面,又平面,又,平面平面又面,平面平面【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思

17、想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直19、(1)(2)【解析】(1)若p为假命题,可直接解得a的取值范围;(2)由题干可知p,q一真一假,分“p真q假”和“p假q真”两种情况讨论,即可得a的范围。【详解】解:(1)由命题P为假命题可得:,即,所以实数的取值范围是.(2)为真命题,为假命题,则一真一假.若为真命题,则有或,若为真命题,则有.则当真假时,则有当假真时,则有所以实数的取值范围是.【点睛】本题考查根据命题的真假来求变量的取值范围,属于基础题,判断为真的语句叫做真命题,判断为假的语

18、句叫做假命题。20、(1)(2)见解析【解析】(1)将a的值代入f(x),再求导得,在定义域内讨论函数单调性,再由函数的最小值正负来判断它的零点个数;(2)把a的值代入f(x),将整理化简为,即证明该不等式在上恒成立,构造新的函数,利用导数可知其在定义域上的最小值,构造函数,由导数可知其定义域上的最大值,二者比较大小,即得证。【详解】(1)解:因为,所以.令,得或;令,得,所以在,上单调递增,在上单调递减,而,所以的零点个数为1.(2)证明:因为,从而.又因为,所以要证,恒成立,即证,恒成立,即证,恒成立.设,则,当时,单调递增;当时,单调递减.所以.设,则,当时,单调递增;当时,单调递减.所

19、以,所以,所以,恒成立,即,.【点睛】本题考查用导数求函数的零点个数以及证明不不等式,运用了构造新的函数的方法。21、 (1)列联表见解析; 有的把握认为该企业生产的这种产品的质量指标值与设备改造有关(2)设备改造后性能更优(3)分布列见解析;.【解析】分析:(1)根据设备改造前的样本的频率分布直方图和设备改造后的样本的频数分布表完成列联表,求出,与临界值比较即可得结果;(2)根据频率分布直方图和频数分布表,可得到设备改造前产品为合格品的概率和设备改造后产品为合格品的概率,从而可得结果;(3)随机变量的取值为:,利用古典概型概率公式,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)根据设备改造前的样本的频率分布直方图和设备改

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论