珠海市重点中学2023学年高考冲刺模拟数学试题(含解析)_第1页
珠海市重点中学2023学年高考冲刺模拟数学试题(含解析)_第2页
珠海市重点中学2023学年高考冲刺模拟数学试题(含解析)_第3页
珠海市重点中学2023学年高考冲刺模拟数学试题(含解析)_第4页
珠海市重点中学2023学年高考冲刺模拟数学试题(含解析)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中,值域为的偶函数是( )ABCD2已知函数,则( )A2B3C4D53下列说法正确的是( )A“若,则”的否命题是“若,则”B“若,则”的逆命题为真命题C,使成立D“若,则”是真命题4已知a,b是两条不同的直线,是两个不同的平面,且,则

2、“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5已知非零向量满足,且与的夹角为,则( )A6BCD36函数的值域为( )ABCD7高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D1008函数的对称轴不可能为( )ABCD9某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A各月最高气温平均值与最低气温平均值总体呈正相关B全年中,2月份的最高气温平均值与最低气温平均值的差值最大C全年中各

3、月最低气温平均值不高于10C的月份有5个D从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势10某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD11已知向量,夹角为, ,则( )A2B4CD12的展开式中的系数是-10,则实数( )A2B1C-1D-2二、填空题:本题共4小题,每小题5分,共20分。13已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:若且,则;若且,则;若且,则;若,且,则.其中正确命题的序号为_.14若复数(是虚数单位),则_15根据如图所示的伪代码,若输入的的值为2,则输出的的值为_.16设为定义在上的偶函数,当时,(为常数)

4、,若,则实数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥的底面为直角梯形,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.18(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.()求证:平面平面; ()若,求二面角的余弦值.19(12分) 选修4-5:不等式选讲设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.20(12分)已知如图1,在RtABC中,ACB=30,ABC=90,D为AC中点,AEBD于E,延长AE交BC于F,将ABD沿B

5、D折起,使平面ABD平面BCD,如图2所示。()求证:AE平面BCD; ()求二面角A-DC-B的余弦值; ()求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程)21(12分)已知椭圆 的左焦点为F,上顶点为A,直线AF与直线 垂直,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线 交于点Q,且,求点P的坐标.22(10分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求

6、出点的坐标;若不存在,说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C考点:1、函数的奇偶性;2、函数的值域2、A【答案解析】根据分段函数直接计算得到答案.【题目详解】因为所以.故选:.【答案点睛】本题考查了分段函数计算,意在考查学生的计算能力.3、D【答案解析】选项A,否命题为“若,则”,故A不正确选项B,逆命题为“若

7、,则”,为假命题,故B不正确选项C,由题意知对,都有,故C不正确选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确选D4、C【答案解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【题目详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【答案点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.5、D【答案解析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可【题目详解】解:非零向量,满足,可知两个向量垂直,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则故选:【答案点睛】本题考

8、查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题6、A【答案解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【题目详解】,因此,函数的值域为.故选:A.【答案点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.7、D【答案解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【题目详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【答案点

9、睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.8、D【答案解析】由条件利用余弦函数的图象的对称性,得出结论【题目详解】对于函数,令,解得,当时,函数的对称轴为,.故选:D.【答案点睛】本题主要考查余弦函数的图象的对称性,属于基础题9、D【答案解析】根据折线图依次判断每个选项得到答案.【题目详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月

10、至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【答案点睛】本题考查了折线图,意在考查学生的理解能力.10、B【答案解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积【题目详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【答案点睛】本题考查了利用三视图求几何体体积的问题,是基础题11、A【答案解析】根据模长计算公式和数量积运算,即可容易求得结果.【题目详解】由于,故选:A.【答案点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.12、C【答案解析】利用

11、通项公式找到的系数,令其等于-10即可.【题目详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【答案点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断【题目详解】若且,的位置关系是平行、相交或异面,错;若且,则或者,错;若,设过的平面与交于直线,则,又,则,正确;若,且,由线面垂直的定义知,正确故答案为:【答案点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考

12、查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础14、【答案解析】直接根据复数的代数形式四则运算法则计算即可【题目详解】,【答案点睛】本题主要考查复数的代数形式四则运算法则的应用15、【答案解析】满足条件执行,否则执行.【题目详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1【答案点睛】本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.16、1【答案解析】根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【题目详解】因为为定义在上的偶函数,所以,又因为当时,所以,所以实数的值为1.故答案为:1【答案点睛】本题主要考查函数奇偶性的应用,还考查了

13、运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【答案解析】(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【题目详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则,因为底面,则,由知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,所以,设,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,则平面,从而M到平面的距离,所以.【答案点睛】本题考查

14、线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.18、()详见解析;().【答案解析】()由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;()取的中点,连接、,以、所在直线分别为、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【题目详解】()是正方形,平面,平面,、平面,且,平面 ,又平面,平面平面;()取的中点,连接、,是正方形,易知、两两垂直,以点为坐标原点,以、所在直线分别为、轴建立如图所示的空间直角坐标系,在中,、,设

15、平面的一个法向量,由,得,令,则,.设平面的一个法向量,由,得,取,得,得.,二面角为钝二面角,二面角的余弦值为.【答案点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.19、 (1) (2) 【答案解析】(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【题目详解】(1)不等式,即等价于 或或 解得 ,所以原不等式的解集为; (2)当时,不等式,即,所以在上有解 即在上有解, 所以,【答案点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.20、()证明见解析

16、;();()1:5【答案解析】()由平面ABD平面BCD,交线为BD,AEBD于E,能证明AE平面BCD;()以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;()利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可【题目详解】()证明:平面ABD平面BCD,交线为BD,又在ABD中,AEBD于E,AE平面ABD,AE平面BCD()由(1)知AE平面BCD,AEEF,由题意知EFBD,又AEBD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直

17、角坐标系E-xyz,设AB=BD=DC=AD=2,则BE=ED=1,AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),F(,0,0),C(,2,0),由AE平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,二面角A-DC-B的平面角为锐角,故余弦值为()三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.【答案点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.21、(I) (II)【答案解析】(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,

18、由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出直线的方程,从而求得点的坐标,代入,化简可求得点的坐标.【题目详解】(I)椭圆的左焦点,上顶点,直线AF与直线垂直直线AF的斜率,即 又点A是线段BF的中点点的坐标为 又点在直线上 由得: 椭圆的方程为 (II)设 由(I)易得顶点M、N的坐标为 直线MP的方程是: 由 得: 又点P在椭圆上,故 或(舍) 点P的坐标为【答案点睛】本小题主要考查直线和圆锥曲线的位置关系,考查两直线垂直的条件,考查向量数量积的运算.属于中档题.在解题过程中,首先阅读清楚题意,题目所叙述的坐标、所叙述的直线是怎么得到的,向量的数量积对应的坐标都有哪一些,应该怎么得到,这些在读题的时候需要分析清楚.22、 (1) (2)见解析【答案解析】(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论