版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()ABCD2如图,某几何体的三视图如图所示(单位:),则该几何体的体积是( ) ABCD3已知函数(为自然对数的底数),若对于任意的,总存
2、在,使得 成立,则实数的取值范围为( )A BC D4组合数恒等于( )ABCD5已知复数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限6三位男同学和两位女同学随机排成一列,则女同学甲站在女同学乙的前面的概率是()ABCD7已知集合,若,则实数的取值范围是( )ABCD8已知定义在R上的偶函数(其中e为自然对数的底数),记,则a,b,c的大小关系是( )ABCD9若直线的倾斜角为,则( )A等于B等于C等于D不存在10设两个正态分布和的密度函数图像如图所示则有( )ABCD11展开式中的所有项系数和是()A0B1C256D51212已知,若为奇函数,且在上单调递增
3、,则实数的值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13复数满足,则的最小值是_14函数 的最小正周期为_15若向量与平行则_16在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线,过焦点作斜率为的直线交抛物线于两点.(1)若,求;(2)过焦点再作斜率为的直线交抛物线于两点,且分别是线段的中点,若,证明:直线过定点.18(12分)平顶山市公安局交警支队依据中华人民共和国道路交通安全法第条规定:所有主干道路凡机动车途经十字口或
4、斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:月份违章驾驶员人数()请利用所给数据求违章人数与月份之间的回归直线方程;()预测该路段月份的不“礼让斑马线”违章驾驶员人数参考公式:,19(12分)在数列中,设.(1)证明:数列是等比数列;(2)求数列的通项公式.20(12分)随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.年份网民人数互联网普及率手机网民人数手机网民普及率2009
5、201020112012201320142015201620172018(互联网普及率(网民人数/人口总数)100%;手机网民普及率(手机网民人数/人口总数)100%)()从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;()分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;()若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)21(12分)已知函数.(1)当,时,求函数的值域;(2)若函数在上的最大值为1,求实数的值.22(10分)如图,在侧棱垂直于底面的三棱柱中, 为侧面的对角线的
6、交点, 分别为棱的中点.(1)求证:平面/平面;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算【详解】解:两颗骰子各掷一次包含的基本事件的个数是1事件A包含的基本事件个数有,则事件AB包含的基本事件个数为10,则所以在事件A发生的条件下,事件B发生的概率为:,故选:D【点睛】本题考查条件概率,属于基础题2、C【解析】根据三视图知几何体为上下底面为等腰直角三角形,高为的三棱台,计算体积得到答案.【详解】根据三视图知:几何体为
7、上下底面为等腰直角三角形,高为的三棱台,故.故选:.【点睛】本题考查了三视图求体积,意在考查学生的计算能力和空间想象能力.3、A【解析】,在区间上为增函数,在区间上为减函数.,又,则函数在区间上的值域为.当时,函数在区间上的值域为.依题意有,则有,得.当时,函数在区间上的值域为,不符合题意.当时,函数在区间上的值域为.依题意有,则有,得.综合有实数的取值范围为.选A.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.4、D【解析】根据组合数的公
8、式得到和,再比较选项得到答案.【详解】,可知 故选:D【点睛】本题考查组合数的计算公式,意在考查基本公式,属于基础题型.5、D【解析】根据复数的运算法则,化简复数,再利用复数的表示,即可判定,得到答案.【详解】由题意,复数,所以复数对应的点位于第四象限.故选D.【点睛】本题主要考查了复数的除法运算,以及复数的表示,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】三男两女的全排列中女同学甲要么站在女同学乙的前面要么站在女同学的后面【详解】三男两女的全排列中女同学甲要么站在女同学乙的前面要么站在女同学的后面即概率都为【点睛】本题
9、考查排位概率,属于基础题7、A【解析】由已知得,由,则,又,所以.故选A.8、A【解析】先根据函数奇偶性,求出,得到,再由指数函数单调性,以及余弦函数单调性,得到在上单调递增,进而可得出结果.【详解】因为是定义在R上的偶函数,所以,即,即,所以,解得:,所以,当时,因为是单调递增函数,在上单调递减,所以在上单调递增,又,所以,即.故选:A.【点睛】本题主要考查由函数单调比较大小,由函数奇偶性求参数,熟记函数单调性与奇偶性即可,属于常考题型.9、C【解析】分析:根据画出的直线得直线的倾斜角.详解:直线x=1的倾斜角为故答案为:C.点睛:(1)本题主要考查特殊直线的倾斜角,意在考查学生对该知识的掌
10、握水平.(2)任意一条直线都有倾斜角,但是不是每一条直线都有斜率.10、A【解析】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A11、B【解析】令,可求出展开式中的所有项系数和.【详解】令,则,即展开式中的所有项系数和是1,故选B.【点睛】本题考查了二项式定理的应用,考查了展开式的系数和的求法,属于基础题.12、B【解析】先根据奇函数性质确定取法,再根据单调性进行取舍,进而确定选项.【详解】因为为奇函数,所以因为,所以因此选B.【点睛】本题考查幂函数奇偶性与单调性,考查基本判
11、断选择能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,求出圆心到原点的距离,最短距离要减去半径即可得解.【详解】解:复数满足,点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,连接圆心与原点,长度是,最短距离要减去半径故答案为:【点睛】本题考查复数的几何意义,本题解题的关键是看出复数对应的点在圆上,根据圆上到原点的最短距离得到要求的距离,属于基础题14、【解析】直接利用三角函数的周期公式求出函数的最小正周期.【详解】由题得函数的最小正周期.故
12、答案为【点睛】本题主要考查正弦型函数的最小正周期的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值【详解】由题意,向量与平行,所以,解得故答案为【点睛】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题16、【解析】圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,只需圆C:(x-4)2+y2=4与直线y=kx-2有公共点即
13、可设圆心C(4,0)到直线y=kx-2的距离为d,即3k24k,0k,故可知参数k的最大值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)设,联立直线的方程和抛物线方程可得,然后利用即可求出(2)根据(1)中结果可得到,同理,由可推出,然后写出直线的方程化简即可.【详解】(1),设,由得,解得(2),同理,所以化简得:直线过定点【点睛】涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.18、();()人.【解析】()计算出和,然后根据公式,求出和,得到回归直线方程;()根据回归直线方
14、程,代入【详解】解:()由表中数据,计算;,所以与之间的回归直线方程为;()时,预测该路段月份的不“礼让斑马线”违章驾驶员人数为人【点睛】本题考查最小二乘法求回归直线方程,根据回归方程进行预测,属于简单题.19、(1)见证明;(2)【解析】(1)结合已知条件,运用等比数列的定义进行证明(2)先求出数列的通项公式,然后再求出数列的通项公式【详解】(1)证明:因为,所以,所以,因为,所以,故数列是等比数列,首项是2,公比是2.(2)解:由(1)可知,数列是等比数列,首项,公比,所以.因为,所以,则.【点睛】本题考查了证明数列是等比数列,求数列通项公式,结合定义即可求出结果,较为基础20、();()
15、分布列见解析,;()【解析】()由表格得出手机网民人数占网民总人数比值超过的年份,由概率公式计算即可;()由表格得出的可能取值,求出对应的概率,列出分布列,计算数学期望即可;()观察两组数据,可以发现网民人数集中在之间的人数多于手机网民人数,则网民人数比较集中,而手机网民人数较为分散,由此可得出.【详解】解:()设事件:“从这十年中随机选取一年,该年手机网民人数占网民总人数比值超过”.由题意可知:该年手机网民人数占网民总人数比值超过80%的年份为,共6个 则. ()网民人数超过6亿的年份有共六年,其中手机网民普及率超过 的年份有这年.所以的取值为.所以, , .随机变量的分布列为 . ().【
16、点睛】本题主要考查了计算古典概型的概率,离散型随机变量的分布列,数学期望等,属于中档题.21、(1);(2).【解析】(1)根据二次函数对称轴为可知,进而得到函数值域;(2)由解析式知函数对称轴为,分别在、和三种情况下,根据二次函数性质确定最大值点,利用最大值构造方程可求得结果.【详解】(1)当时,.又,所以,的值域为.(2)由函数解析式知:开口方向向上,对称轴为.当,即时,解得:;当,即时,解得:(舍去);当,即时,此时,令,解得:(舍去),令,解得:(舍去).综上所述:.【点睛】本题考查二次函数值域的求解、根据二次函数最值求解参数值的问题;求解参数值的关键是能够根据二次函数对称轴位置,确定最值点,进而利用最值构造方程求得结果.22、 (1)证明见解析;(2).【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题01 热爱生活 热爱写作+作文选材技巧-【同步作文课】六年级语文上册单元写作深度指导(统编版2024·五四学制)
- 幼儿园小班音乐《红眼睛》课件
- 西京学院《影像设备创新设计》2023-2024学年第一学期期末试卷
- 西京学院《数控技术与编程》2021-2022学年期末试卷
- 冰淇淋素描课件
- 核心制度课件
- 管理会计实务 课件情境3、4 谋而后定:企业战略执行的有效工具、做好企业的战略参谋官
- 西华师范大学《体育科学研究方法》2023-2024学年第一学期期末试卷
- 西华师范大学《科学教育学》2022-2023学年第一学期期末试卷
- 移动机器人原理与技术 课件 第7、8章 移动机器人语音识别与控制、移动机器人的通信系统
- 长沙市长郡双语实验学校人教版七年级上册期中生物期中试卷及答案
- 高考文言通假字汇总
- “治未病”思想与脾胃病的防治
- 项目监理人员配置标准
- 磷酸二氢钾的安全技术说明书
- (高级)信息通信网络运行管理员技能鉴定考试题库(附答案)
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- 3.3《不简单的杠杆》课件
- 弗洛伊德生平及精神分析学说的发展历程
- 普通高中语文课程标准解读课件
- 招商引资面试题
评论
0/150
提交评论