版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知 的展开式中,含项的系数为70,则实数a的值为( )A1B-1C2D-22若命题“使”是假命题,则实数的取值范围为( )ABCD3某班4名同学参加数学测试,每人通过测试的概率均为,且彼此相互独立,若X为4名同学通过测试的人数,则D
2、(X)的值为()A1B2C3D44一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,其中,中位数为22,则x等于()A21B22C23D245已知位学生得某次数学测试成绩得茎叶图如图,则下列说法正确的是( )A众数为7B极差为19C中位数为64.5D平均数为646函数的定义域为,且,当时,;当时,则A672B673C1345D13467已知直线l的参数方程为x=t+1,y=t-1,(tA0B45C908已知函数的图象在点处的切线为,若也与函数,的图象相切,则必满足( )ABCD9已知定义在上的函数的导函数为,且对任意都有,则不等式的解集为( )ABCD10某批零
3、件的尺寸X服从正态分布,且满足,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n的最小值为( )A7B6C5D411给出下列四个说法:命题“,都有”的否定是“,使得”;已知、,命题“若,则”的逆否命题是真命题;是的必要不充分条件;若为函数的零点,则.其中正确的个数为( )ABCD12中国古代数学的瑰宝九章算术中涉及到一种非常独特的几何体鳖擩,它是指四面皆为直角三角形的四面体.现有四面体为一个鳖擩,已知平面,若该鳖擩的每个顶点都在球的表面上,则球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13不同的五
4、种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有 ;(用数字作答)14的展开式中的系数是_15三棱锥中,平面,则三棱锥外接球的体积为_.16观察下列等式:,可以推测_(,用含有的代数式表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,曲线在处的切线方程为.(1)求实数的值;(2)求函数在的最值.18(12分)()(1)当时,求的单调区间;(2)若,存在两个极值点,试比较与的大小;(3)求证:(,)19(12分)已知条件p:方程表示焦点在y轴上的椭圆;条件q:双曲线的离心率(1)若a=2,P=m|m满足条件
5、P,Q=m|m满足条件q,求;(2)若是的充分不必要条件,求实数a的取值范围20(12分)已知椭圆C:,点P(0,1).(1)过P点作斜率为k(k0)的直线交椭圆C于A点,求弦长PA(用k表示);(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?21(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系曲线的极坐标方程是(1)写出曲线的直角坐标方程和直线的普通方程;(2)设直线与曲线交于,两点,求的面积22(10分)已知函数.若曲线和曲线都过点,且在点
6、处有相同的切线.()求的值;()若时,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:由题意结合二项式展开式的通项公式得到关于a的方程,解方程即可求得实数a的值.详解:展开式的通项公式为:,由于,据此可知含项的系数为:,结合题意可知:,解得:.本题选择A选项.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr,如常数项指数为零、有理项指数为整数等);
7、第二步是根据所求的指数,再求所求解的项(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解2、B【解析】若原命题为假,则否命题为真,根据否命题求的范围【详解】由题得,原命题的否命题是“,使”,即,解得选B.【点睛】本题考查原命题和否命题的真假关系,属于基础题3、A【解析】由题意知XB(4,),根据二项分布的方差公式进行求解即可【详解】每位同学能通过该测试的概率都是,且各人能否通过测试是相互独立的,XB(4,),则X的方差D(X)4(1)1,故选A【点睛】本题主要考查离散型随机变量的方差的计算,根据题意得到XB(4,)是解决本题的关键4、A【解析】这组数据共有8个,得到这组数据
8、的中位数是最中间两个数字的平均数,列出中位数的表示式,得到关于x的方程,解方程即可【详解】由条件可知数字的个数为偶数,这组数据的中位数是最中间两个数字的平均数,中位数22,x21故选A【点睛】本题考查了中位数的概念及求解方法,属于基础题5、C【解析】根据茎叶图中的数据求得这组数据的众数、极差、中位数和平均数【详解】根据茎叶图中的数据知,这组数据的众数为67,A错误;极差是755718,B错误;中位数是64.5,C正确;平均数为60(31+1+2+7+7+12+15)65,D错误故选C【点睛】本题考查了利用茎叶图求众数、极差、中位数和平均数的应用问题,是基础题6、D【解析】根据函数周期的定义,得
9、到函数是周期为3的周期函数,进而求得的值,进而得到,即可求解.【详解】根据题意,函数的定义域为,且,则函数是周期为3的周期函数,又由当时,则,当时,则,由函数是周期为3的周期函数,则 则,所以,故选D.【点睛】本题主要考查了函数周期性的应用,以及函数值的计算,其中解答中根据函数周期性的定义,求得函数是周期为3的周期函数是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】将直线l的参数方程化为普通方程,得出该直线的斜率,即可得出该直线的倾斜角。【详解】直线l的直角坐标方程为x-y-2=0,斜率k=tan=1,所以=45【点睛】本题考查利用直线的参数方程求直线的倾斜角,参数方程化为普
10、通方程是常用方法,而参数方程化为普通方程有两种常见的消参方法:加减消元法;代入消元法;平方消元法。8、D【解析】函数的导数为,图像在点处的切线的斜率为,切线方程为,即,设切线与相切的切点为,由的导数为,切线方程为,即,由,可得,且,解得,消去,可得,令,在上单调递增,且,所以有的根,故选D.9、B【解析】先构造函数,求导得到在R上单调递增,根据函数的单调性可求得不等式的解集.【详解】构造函数, , .又任意都有.在R上恒成立. 在R上单调递增.当时,有,即的解集为.【点睛】本题主要考查利用函数的单调性解不等式,根据题目条件构造一个新函数是解决本题的关键.10、D【解析】计算,根据题意得到,设,
11、判断数列单调递减,又,得到答案.【详解】因为,且,所以,即每个零件合格的概率为.合格零件不少于2件的对立事件是合格零件个数为零个或一个.合格零件个数为零个或一个的概率为,由,得 , 令.因为,所以单调递减,又因为,所以不等式的解集为.【点睛】本题考查了正态分布,概率的计算,数列的单调性,意在考查学生的计算能力和综合应用能力.11、C【解析】根据全称命题的否定可判断出命题的真假;根据原命题的真假可判断出命题的真假;解出不等式,利用充分必要性判断出命题的真假;构造函数,得出,根据零点的定义和函数的单调性来判断命题的正误.【详解】对于命题,由全称命题的否定可知,命题为假命题;对于命题,原命题为真命题
12、,则其逆否命题也为真命题,命题为真命题;对于命题,解不等式,得或,所以,是的充分不必要条件,命题为假命题;对于命题,函数的定义域为,构造函数,则函数为增函数,又,为函数的零点,则,则,命题为真命题.故选:C.【点睛】本题考查命题真假的判断,涉及命题的否定,四种命题的关系,充分必要的判断以及函数的零点,考查推理能力,属于中等题.12、B【解析】分析:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,算出长方体体对角线即可.详解:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,则,故.故选:B.点睛:本题主要考查了转化与化归思想的运用.二、填空题:本题共4小题,每
13、小题5分,共20分。13、24【解析】甲、乙排在一起,用捆绑法,先排甲、乙、戊,有种排法,丙、丁不排在一起,用插空法,有种排法,所以共有种考点:排列组合公式.14、243【解析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数详解:二项式展开式的通项为,展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况15、【解析】画出示意图,根据“球心与任意小圆面的圆心的连线垂直于小圆圆面、球心与弦中点的连线垂直于弦”确定外接球的球心所在位置,最后
14、计算出体积.【详解】如图所示:为等腰直角三角形,所以的外接圆圆心即为中点,过作一条直线,平面,则圆心在直线上,过的中点作,垂足为,此时可知:,故即为球心,所以球的半径,所以球的体积为:.【点睛】本题考查外接球的体积计算,难度一般.求解外接球、内切球的有关问题,第一步先确定球心,第二步计算相关值.其中球心的确定有两种思路:(1)将几何体放到正方体或者长方体中直接确定球心;(2)根据球心与小圆面的圆心、弦中点等的位置关系确定球心.16、或或【解析】观察找到规律由等差数列求和可得.【详解】由观察找到规律可得:故可得解.【点睛】本题考查观察能力和等差数列求和,属于中档题.三、解答题:共70分。解答应写
15、出文字说明、证明过程或演算步骤。17、(1);(2),【解析】(1),可得到,即可求出的值;(2)由可判断的单调性,从而可求出函数在的最值.【详解】(1),则,(2)的定义域为,令,则,当时,单调递减;当时,单调递增, ,且,【点睛】本题考查了导数的几何意义,考查了函数的单调性的应用,考查了学生的计算能力,属于基础题.18、(1)递减,递增(2)(3)详见解析【解析】试题分析:(1)求出函数的定义域,求出导数,求得单调区间,即可得到极值;(2)求出导数,求得极值点,再求极值之和,构造当0t1时,g(t)=2lnt+-2,运用导数,判断单调性,即可得到结论;(3)当0t1时,g(t)=2lnt+
16、-20恒成立,即lnt+-10恒成立,设t=(n2,nN),即ln+n-10,即有n-1lnn,运用累加法和等差数列的求和公式及对数的运算性质,即可得证试题解析:(),定义域,递减,递增(),(也可使用韦达定理)设,当时,当时,在上递减,即恒成立综上述()当时,恒成立,即恒成立设,即,考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用19、 (1) (2) 【解析】(1)分别求出:p: ,解得P,q:,解得Q,再根据集合的交集的概念得到;(2)根据是的充分不必要条件,可得q是p的充分不必要条件,即可得出【详解】(1)条件p:方程表示焦点在y轴上的椭圆,则,解得条件q:双曲线的离心率
17、,解得(2)由(1)可得:条件q:双曲线的离心率,解得是的充分不必要条件,则q是p的充分不必要条件,解得实数a的取值范围是【点睛】本题考查了椭圆与双曲线的标准方程及其性质、方程与不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题20、(1);(2)直线AB过定点.【解析】(1)先由题意得到直线PA的方程,联立直线与椭圆,得到A点坐标,再由弦长公式,即可求出结果;(2)先由题意,得到,直线的斜率必存在,设直线为,联立直线与椭圆方程,根据韦达定理,得到,再由,结合题意,求出,进而可得出结果【详解】解:(1)把代入得:,所以(2)由题意可以,直线的斜率必存在,设直线为,有,所以,
18、即直线AB过定点【点睛】本题主要考查椭圆的弦长,以及椭圆中的定点问题,熟记椭圆的标准方程以及椭圆的简单性质,即可求解,属于常考题型.21、(1)曲线的直角坐标方程为;直线的普通方程为;(2).【解析】(1)由极坐标与直角坐标的互化公式,即可得出曲线的直角坐标方程;根据直线的参数方程,消去参数,即可得到普通方程;(2)先由题意,先设,对应的参数分别为,将直线的参数方程化为,代入,根据参数下的弦长公式求出,再由点到直线距离公式,求出点到直线的距离,进而可求出三角形的面积.【详解】(1)由得,即,即曲线的直角坐标方程为;由消去可得:,即直线的普通方程为;(2)因为直线与曲线交于,两点,设,对应的参数分别为,由可化为,代入得,则有,因此,又点到直线的距离为,因此的面积为.【点睛】本题主要考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,以及参数下的弦长问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业共有部位更新改造合同
- 2024年度乡村太阳能照明项目改造合同2篇
- 2024年水泥电杆产业链上下游企业战略合作合同2篇
- 2024版办公楼空调设备更换及保养服务合同3篇
- 2024年度电子产品研发与生产合作合同6篇
- 2024年度市政基础设施安全生产及文明施工监督合同2篇
- 2024版废塑料瓶回收与环保清洗剂生产合同3篇
- 2024年危险化学品驾驶员劳动合同权益保护措施3篇
- 2024年农业多功能田土承包综合开发合同3篇
- 2024版店面房租赁附带租赁保证金退还细则合同3篇
- GB 8537-2018食品安全国家标准饮用天然矿泉水
- GB 31247-2014电缆及光缆燃烧性能分级
- 斯伦贝谢智能完井工具介绍
- 主要农作物(粮食作物)课件
- 百词斩-定语从句课件-(;)
- 珍惜时间主题班会-做时间的主人课件
- 市政工程施工总体部署
- 护士准入申请表
- 三年级上册英语课件-Unit3 Look at me-人教(PEP) (6)(共30张PPT)
- 糖皮质激素在呼吸科的应用课件
- 合法离婚协议书(2篇)
评论
0/150
提交评论