高二选修回归分析一 完整版课件PPT_第1页
高二选修回归分析一 完整版课件PPT_第2页
高二选修回归分析一 完整版课件PPT_第3页
高二选修回归分析一 完整版课件PPT_第4页
高二选修回归分析一 完整版课件PPT_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1回归分析的基本思想及其初步应用(一)高二数学 选修1-2问题1:正方形的面积y与正方形的边长x之间 的函数关系是y = x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否 有一个确定性的关系?复习 变量之间的两种关系 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。 1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2): 现实生活中存在着大量的相关关系。 如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?10 20 30 40

2、 50500450400350300发现:图中各点,大致分布在某条直线附近。施化肥量x 15 20 25 30 35 40 45水稻产量y 330 345 365 405 445 450 455xy散点图施化肥量水稻产量1、所求直线方程叫做回归直线方程; 相应的直线叫做回归直线。2、对两个变量进行的线性分析叫做线性回归分析。1、回归直线方程步骤:收集数据;画散点图;求回归直线 方程 ybxa;3.用回归直线方程进行预报。最小二乘法:称为样本点的中心。2 比数学3中“回归”增加的内容数学统计画散点图了解最小二乘法的思想求回归直线方程ybxa用回归直线方程解决应用问题选修-统计案例引入线性回归模型

3、ybxae了解模型中随机误差项e产生的原因了解相关指数 R2 和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果案例1 从某大学中随机选出8名女大学生,其身高和体重数据如下表:编号12345678身高165165157170175165155170体重4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172的女大学生的体重。分析:1.由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量2.回归方程:1. 散点图;2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程

4、刻画它们之间的关系。 从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们之间的关系。我们可以用下面的线性回归模型来表示: y=bx+a+e,其中a和b为模型的未知参数(它们的估计值的计算公式如下),e称为随机误差。思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。 以上三项误差越小,说明我们的回归模型的拟合效果越好。函数模型与回归模型之间的差别

5、一次函数模型:线性回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解释变量,因变量y称为预报变量。不能提供选择模型的准则可以提供选择模型的准则所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为 探究:身高为172cm的女大学生的体重一定60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于60.316kg。即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只

6、能给出她们平均体重的值。图中的样本点和回归直线的相互位置说明了这一点。b=0.849是斜率的估计值,说明身高x每增加一个单位,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系。如何描述它们之间线性相关关系的强弱?如何描述两个变量之间线性相关关系的强弱? 在数学3中,我们学习了用相关系数r来衡量两个变量之间线性相关关系的方法。相关系数r正相关;负相关通常,|r| 0.75,认为两个变量有很强的相关性相关关系的测度(相关系数取值及其意义)-1.0+1.00-0.5+0.5完全负相关无线性相关完全正相关负相关程度增加r正相关程度增加 本例中, r=0.7980.75这表明体重与身高

7、有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的。 假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号对回归模型进行统计检验54.5kg在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解释变量(身高)和随机误差的影响。思考:如何刻画预报变量(体重)的变化?

8、这个变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?5943616454505748体重/kg170155165175170157165165身高/cm87654321编号 例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解释变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解释变量和随机误差的组合效应。 编号为3的女大学生的体重也没有落在水平直线上,她的体重为50kg。解释变量(身高)和随机误差共同把这名学生的体重从50kg“推”到了54.5kg,相差-4.5kg,这时解释变量和随机误差的组

9、合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用表示总的效应,称为总偏差平方和。在例1中,总偏差平方和为354。 那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差? 假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。因此,数据点和它在回归直线上相应位置的差异 是随机误差的效应,称 为残差。 例如,编号为6的女

10、大学生,计算随机误差的效应(残差)为:对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为:称为残差平方和,它代表了随机误差的效应。在例1中,残差平方和约为128.361。 由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为128.361,所以解析变量的效应为解析变量和随机误差的总效应(总偏差平方和) =解析变量的效应(回归平方和)+随机误差的效应(残差平方和)354-128.361=225.639这个值称为回归平方和。我们可以用相关指数R2来刻画回归的效果,其计算公式是显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归

11、模型中,R2表示解析变量对预报变量变化的贡献率。 R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。 如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。1354总计0.36128.3610.64225.639比例平方和来源表1-3 从表3-1中可以看出,解析变量对总效应约贡献了64%,即R2 0.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。随机误差解释变量练习:在一段时间内,某中商品的价格x元和需求量 y件之间的一组数据为:求出y对x的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量y1210753解:价格x1416182022需求量y1210753129.77.45.12.87.47.47.47.47.4列出残差表为0.994因而,拟合效果较好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4作业:一台机器使用的时间较长,但还可以使用,它按不同的转速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论