下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、简单的线性规划问题教学设计(一、教材分析本节课是普通高中课程标准实验教科书数学人教A版必修5第三章不等式中第简单的线性规划问题的第一课时. 本课内容是线性规划的相关概念和简单的线性规划问题的解法线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何
2、合理规划,能以最少的人力、物力、资金等资源来完成. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.二、学情分析1. 已经掌握用平面区域表示二元一次不等式(组)2. 初步学会分析简单的实际应用问题3. 能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示 本节课学生在学习过程中可能遇到以下疑虑和困难:1.将实际问题抽象成线性规划问题;2.用图解法解线性规划问题中,为什么要将求目标函数最
3、值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?3.数形结合思想的深入理解.三、教学目标 (一)、知识与技能 1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.2.理解线性规划问题的图解法3. 会用图解法求线性目标函数的最优解.(二)、过程与方法1.在应用图解法解题的过程中培养学生的观察能力、理解能力.2.在变式训练的过程中,培养学生的分析能力、探索能力.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.(三)、情感态度与价值观1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣.2.让学生
4、体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.四、教学重点、难点重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.难点:借助线性目标函数的几何含义准确理解线性目标函数在y 轴上的截距与z最值之间的关系 .3.数形结合思想的深入理解.五、教学过程数学教学是数学活动的教学,我将整个教学过程分为五个环节:1.基本概念讲解幻灯片第2张 不等式组是一组对变量 x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又叫线性约束条件. 线性约束条件除了用一次不等式表示外,有时也用一次方程表示. 欲求最大值或最小值的函数叫做目标函数. 由于目标函数又是x、y的一次解析
5、式,所以又叫线性目标函数.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.学生们提前预习并填空,锻炼学生自主学习的能力。2.例题讲解(1)线性目标函数的最值问题幻灯片第3张例1 若变量x,y满足约束条件eq blcrc (avs4alco1(y2x,,xy1,,y1,)则x2y的最大值是回顾上节课的内容,二元一次不等式及其平面区域,特别是如何画出可行域。(可由学生上台操作)变式练习:求zx2y 的取值范围截距型的线性规划
6、问题重点在于画出可行域,将目标函数转换成斜截式,理解纵截距和目标函数之间的关系。(2)生活实际中的线性规划问题幻灯片第46张教师组织学生学习引例.例2 某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?师生活动:通过教师引导,让学生正确理解题意,用不等式组表示问题中的限制条件及作出相应的平面区域,将实际问题转化为数学问题.(1)、教师提问:同学们,你们能用不等式组表示问题中的限制条件吗?引导学生设定未知数(设甲、乙两种产品
7、分别生产x、y件), 分析已知条件得到二元一次方程组:(2)、让学生画出不等式组所表示的平面区域.【设计意图】数学是现实世界的反映.通过引入学生感兴趣的实际生活问题,激发学生兴趣,使学生产生急于解决问题的内驱力,引发了学生的思考,同时师生之间通过互动复习旧知,培养学生从实际问题抽象出数学模型的能力.(3)、教师进一步提出新问题:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?引导学生若设定工厂获得的利润为z,则易得z = 2x + 3y,此时问题转化为即求z的最大值的问题了.【设计意图】添加优化问题,定义目标函数,引出新问题.探究交流,解决问题(1)、教师提问:
8、如何求z=2x+3y的最大值问题?先让学生自主探究,再分组讨论交流,然后试着这样引导学生:由于已经将x ,y所满足的条件几何化了,你能否将式子z=2x+3y作某种几何解释?学生自然地想到它在几何上表示直线2x+3y-z=0. 当z取不同的值时可得到一族平行直线.于是问题又转化为当这族直线与可行域有公共交点时,如何求z=2x+3y的最大值.(2)、这一问题对于部分学生仍有一定难度,教师再次提问:在直线2x+3y-z=0中,z是否与这直线的某种几何意义有关?学生讨论交流后得出:将直线2x+3y-z=0改写成斜截式,学生此时会明白直线它表示为斜率为截距的直线,当z变化时,可以得到一组互相平行的直线,
9、而且当截距最大时,z取最大值. 于是问题又转化为当2x+3y-z=0这族直线与可行域有公共交点时,在可行域内找一个点,使直线经过此点时在y轴上的截距最大. 接着让学生动手实践,用作图法找到点E并求出点E的坐标(4,2),而求出z的最大值为14,所以每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元 .师生活动:教师引发学生思考变形目标函数,将z=2x+3y化成的形式,挖掘几何含义,作过原点直线并进行平移,观察纵截距的最大值,教师利用多媒体辅助教学工具作动态演示平移确定最值,并有意强调解题步骤:画、作、移、求.【设计意图】:让学生自主探究,体验数学知识的发生、发展过程,体验转化和数形结
10、合的思想方法,通过目标函数的不同变式,让学生熟悉求最值的方法,从而让学生更好地理解数学概念和方法,突出了重点,化解了难点.3.反思过程,提练方法幻灯片第7张教师引导学生归纳、提炼求解步骤:第一步:画根据约束条件画出可行域;第二步:作过原点作目标函数直线的平行直线;第三步: 移平移直线找出与可行域有公共点且纵截距最大或最小的直线,确定可行域内最优解的位置;第四步:求解有关方程组求出最优解,将最优解代入目标函数求最值.3.模仿练习,强化方法幻灯片第89张为了更好地理解图解法解线性规划问题的内在规律,同时让学生掌握解决简单线性规划问题的基本步骤,让学生做下面的练习:求z3x5y的最大值和最小值,使x
11、,y满足约束条件: 2.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润(生产1车甲的利润1万,一车乙的利润为5千)?学生独立解决,教师讲解。4.课堂小结幻灯片第10张1)课堂小结:1.回顾引例和练习中展现的两类线性规划应用问题,渗透数学建模的思想 .2.线性规划相关概念3.图解法求解线性规划应用问题的基本步骤 师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.思考题: 【设计意图】让学生巩固所学内容,并为下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论