版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程( )ABCD2如图,在中,是边上一点,延长交的延长线于点,若,则等于()ABCD3如图是小玲设计用手电来测家附近“新华大厦”高度的示意图点处放一水平的平面镜,光线从点出发经
2、平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为( )A米B米C米D米4如果两个相似三角形对应边之比是,那么它们的对应中线之比是( )A1:3B1:4C1:6D1:95如图,线段AB是O的直径,弦CD丄AB,CAB=20,则BOD等于()A20B30C40D606如图,在ABC中,点G为ABC的重心,过点G作DEBC,分别交AB、AC于点D、E,则ADE与四边形DBCE的面积比为()ABCD7如图,在菱形中,且连接则( )ABCD8已知O的半径为3cm,OP4cm,则点P与O的位置关系是( )A点P在圆内 B点P在圆上 C点P在圆外 D无法确定9如图,ABCD,点
3、E在CA的延长线上.若BAE=40,则ACD的大小为( )A150B140C130D12010如图,在O中,若点C是 的中点,A=50,则BOC=()A40B45C50D60二、填空题(每小题3分,共24分)11若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是_12一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是_ 13在函数中,自变量x的取值范围是 14在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90,扇形的半径为4,那么所围成的圆锥的
4、高为_15若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式_16已知a、b是一元二次方程x2+x10的两根,则a+b_17布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是_.18若3a4b(b0),则_三、解答题(共66分)19(10分)如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长20(6分)如图:在RtABC中,C=90,ABC=30。延长CB至D,使DB=AB。连接AD(1)求ADB的度数.(2)根据图形,不使用计算器和数学用表,请你求出tan75的值.
5、21(6分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小 明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老师放入了多少个红色小球.22(8分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且PDA=PBD延长PD交圆的切线BE于点E(1)判断直线PD是否为O的切线,并说明理由;(2)如果BED=
6、60,PD=,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形23(8分)如图,O是ABC的外接圆,PA是O切线,PC交O于点D(1)求证:PACABC;(2)若BAC2ACB,BCD90,AB,CD2,求O的半径24(8分)金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为,测得楼AB的底部B处的俯角为.已知D处距地面高度为12 m,则这个小组测得大楼AB的高度是多少?(结果保留整数.参考数据:,)2
7、5(10分)解分式方程:(1)(2)26(10分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1(1)点在函数的图象上,点的“坐标和”是 ;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式参考答案一、选择题(每小题3分,共30分)1、B【分析】设,则,根据矩形面积公式列出方程【详解】解
8、:设,则,由题意,得故选【点睛】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键2、B【分析】根据平行四边形的性质可得出AB=CD,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,且,故选:【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.3、B【分析】根据光线从点出发经平面镜反射后刚好射到大厦的顶端处,可知,再由,可得,从而可以得到,即可求出CD的长【详解】光线从点出发经平面镜反射后刚好射到大厦的顶端处米,米,米CD=16(米)【点睛】本题考查的知识点是相似三角形
9、的性质与判定,通过判定三角形相似得到对应线段成比例,构成比例是关键4、A【解析】两个相似三角形对应边之比是1:3,它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.5、C【解析】试题分析:由线段AB是O的直径,弦CD丄AB,根据垂径定理的即可求得:,然后由圆周角定理可得BOD=2CAB=220=40故选C考点:圆周角定理;垂径定理6、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明ADEABC,根据相似三角形的性质得到=
10、,然后根据比例的性质得到ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,点G为ABC的重心, AG2GH,DEBC,ADEABC,()2,ADE与四边形DBCE的面积比故选:A【点睛】本题考查了三角形的重心与相似三角形的性质与判定. 重心到顶点的距离与重心到对边中点的距离之比为21.7、D【分析】菱形ABCD属于平行四边形,所以BCAD,根据两直线平行同旁内角互补,可得BAD与ABC互补,已知BAD=120,ABC的度数即可知,且BCE=90,CE=BC可推BCE为等腰直角三角形,其中CBE=45,ABE=ABC-CBE,故ABE的度数可得【详解】解:在菱形ABCD
11、中,BCAD,BAD+ABC=180(两直线平行,同旁内角互补),且BAD=120,ABC=60,又CEAD,且BCAD,CEBC,可得BCE=90,又CE=BC,BCE为等腰直角三角形,CBE=45,ABE=ABC-CBE=60-45=15,故选:D【点睛】本题主要考察了平行线的性质及菱形的性质求角度,掌握平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;菱形中,四条边的线段长度一样,根据以上的性质定理,从边长的关系推得三角形的形状,进而求得角度8、C【解析】由O的半径分别是3,点P到圆心O的距离为4,根据点与圆心的距离与半径的大小关系即可确定点P与O的
12、位置关系【详解】解:O的半径分别是3,点P到圆心O的距离为4,点P与O的位置关系是:点在圆外故选:C.【点睛】本题考查了点与圆的位置关系注意若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内9、B【解析】试题分析:如图,延长DC到F,则ABCD,BAE=40,ECF=BAE=40.ACD=180-ECF=140.故选B考点:1.平行线的性质;2.平角性质.10、A【解析】试题解析: 点C是 的中点, 故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.二、填空题(每小题3分,共24分)11、1【分析】解方程得x=,即a1,可得a5,a1;
13、解不等式组得0a1,综合可得0a1,故满足条件的整数a的值为1,2.【详解】解不等式组,可得,不等式组有且仅有5个整数解,0a1,解分式方程,可得x=,即a1又分式方程有非负数解,x0,即0,解得a5,a10a0时函数图像的每一支上,y随x的增大而减少;当k0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k0即可【详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键16、-1【分析】直接根据两根之和的公式可得答案【详解】a、b是一元二次方程x2+x10的两根,a+b1,故答案为
14、:1【点睛】此题考查一元二次方程根与系数的公式,熟记公式并熟练解题是关键.17、【分析】直接根据概率公式求解【详解】解:随机摸出一个球是红色的概率=故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数18、【分析】依据3a4b,即可得到ab,代入代数式进行计算即可【详解】解:3a4b,ab,故答案为:【点睛】本题主要考查了比例的性质,求出ab是解题的关键三、解答题(共66分)19、1【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE
15、进行计算即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE531【点睛】本题考查了垂径定理,掌握垂径定理及勾股定理是关键20、(1)ADB=15;(2) 【分析】(1)利用等边对等角结合ABC是ADB的外角即可求出ADB的度数;(2)根据图形可得DAB=75,设AC=x, 根据,求出CD即可;【详解】(1)DB=ABBAD=BDAABC=30=BAD+BDAADB=15(2)设AC=x,在RtABC中,ABC=30,【点睛】此题考查了解直角三角形,涉及的知识有:勾股定理,含30度直角三角形的性质,以
16、及锐角三角函数定义,熟练掌握定理及性质是解本题的关键21、(1)P=;(2)加入了5个红球【分析】(1)利用列表法表示出所有可能,进而得出结论即可;(2)根据概率列出相应的方程,求解即可.【详解】(1)列表如图,黑1黑2红黑1/(黑1,黑2)(黑1,红)黑2(黑2,黑1)/(黑2,红)红(红,黑1)(红,黑2)/一共有6种等可能事件,其中颜色不同的等可能事件有4种,颜色不同的概率为P=(2)由图表可得摸到红球概率为设加入了x个红球=解得x=5经检验x=5是原方程的解答:加入了5个红球。【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果
17、数目m,然后利用概率公式计算事件A或事件B的概率22、(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD,由AB是圆O的直径可得ADB=90,进而求得ADO+PDA=90,即可得出直线PD为O的切线;(2)根据BE是O的切线,则EBA=90,即可求得P=30,再由PD为O的切线,得PDO=90,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得ADF=PDA=PBD=ABF,由AB是圆O的直径,得ADB=90,设PBD=x,则可表示出DAF=PAD=90+x,DBF=2x,由圆内接四边形的性质得出x的值,可得出BDE是等边三角形进而证出四边形DF
18、BE为菱形【详解】解:(1)直线PD为O的切线,理由如下:如图1,连接OD,AB是圆O的直径,ADB=90,ADO+BDO=90,又DO=BO,BDO=PBD,PDA=PBD,BDO=PDA,ADO+PDA=90,即PDOD,点D在O上,直线PD为O的切线;(2)BE是O的切线,EBA=90,BED=60,P=30,PD为O的切线,PDO=90,在RtPDO中,P=30,PD=,解得OD=1,=2,PA=POAO=21=1;(3)如图2,依题意得:ADF=PDA,PAD=DAF,PDA=PBDADF=ABF,ADF=PDA=PBD=ABF,AB是圆O的直径,ADB=90,设PBD=x,则DAF
19、=PAD=90+x,DBF=2x,四边形AFBD内接于O,DAF+DBF=180,即90+x+2x=180,解得x=30,ADF=PDA=PBD=ABF=30,BE、ED是O的切线,DE=BE,EBA=90,DBE=60,BDE是等边三角形,BD=DE=BE,又FDB=ADBADF=9030=60DBF=2x=60,BDF是等边三角形,BD=DF=BF,DE=BE=DF=BF,四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大23、(1)见解析;(2)O的半径为1【分析】(1)连接AO延长AO交O于点E,连接EC想办法证明:
20、B+EAC=90,PAC+EAC=90即可解决问题;(2)连接BD,作OMBC于M交O于F,连接OC,CF设O的半径为x求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【详解】(1)连接AO并延长交O于点E,连接ECAE是直径,ACE90,EAC+E90,BE,B+EAC90,PA是切线,PAO90,PAC+EAC90,PACABC(2)连接BD,作OMBC于M交O于F,连接OC,CF设O的半径为xBCD90,BD是O的直径,OMBC,BMMC,OBOD,OMCD1,BACBDC2ACB, ,BDFCDF,ACBCDF,ABCF2,CM2OC2OM2CF2FM2,x2
21、12(2)2(x1)2,x1或2(舍),O的半径为1【点睛】本题考查切线的性质,垂径定理,圆周角定理推论,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用转化的思想思考问题24、这个小组测得大楼AB的高度是31 m.【分析】过点D作于点E,本题涉及到两个直角三角形BDE、ADE,通过解这两个直角三角形求得DE、AE的长度,进而可解即可求出答案【详解】过点D作于点E,则,在中,.在中,.答:这个小组测得大楼AB的高度是31 m.【点睛】本题考查解直角三角形的应用-仰角俯角问题解直角梯形可以通过作高线转化为解直角三角形和矩形的问题25、(1);(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语-山东省淄博市2024-2025学年第一学期高三期末摸底质量检测试题和答案
- 小学一年级100以内
- 《管饲患者临床护理》课件
- 小学数学五年级下分数混合运算
- 《施工视频截图》课件
- 《管子加工及连接》课件
- 《刑事诉讼法立案》课件
- 广东省深圳市福田区2023-2024学年高三上学期期末考试英语试题
- 《滴眼药水的护理》课件
- 游戏行业技术工作概览
- (高清版)JTGT D31-06-2017 季节性冻土地区公路设计与施工技术规范
- 幼儿园健康体检活动方案及流程
- 二年级乘除法口算题计算练习大全2000题(可直接打印)
- 冰箱结构原理与维修
- 2024年交管12123学法减分考试题库及答案大全
- 湖南省长沙市2022-2023学年二年级上学期期末数学试题
- DB29-238-2024 城市综合管廊工程设计规范
- 湖南省印刷业挥发性有机物排放标准2017
- 齐鲁针灸智慧树知到期末考试答案2024年
- 宋代茶文化课件
- 2024年苏州市轨道交通集团有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论