SPSS上机实验报告_第1页
SPSS上机实验报告_第2页
SPSS上机实验报告_第3页
SPSS上机实验报告_第4页
SPSS上机实验报告_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖北科技学院市场营销调研SPSS上机操作实验报告姓名: 李果 学号: XXXXXXX 专业: 11 工商管理 方向 : 市场营销2013 年 12 月 01 日实验名称: 频数分布 成绩: 实验目的和要求: 绘制频数分布表、 频数分布直方图并分析集中趋势 指标、差异性指标和分布形状指标实验内容: 绘制频数分布表和频数分布直方图并分析 实验记录、问题处理:绘制频数分布表销售额频率百分比有效百分比累积百分比79.0013.33.33.380.0013.33.36.782.0013.33.310.085.0026.76.716.789.0013.33.320.093.0013.33.323.395.

2、0013.33.326.796.0026.76.733.397.0026.76.740.099.0026.76.746.7105.0026.76.753.3有效 106.0013.33.356.7109.0013.33.360.0110.0013.33.363.3112.0026.76.770.0113.0013.33.373.3114.0013.33.376.7115.0013.33.380.0124.0013.33.383.3129.0026.76.790.0130.0026.76.796.7190.0013.33.3100.0合计30100.0100.0频数分布直方图集中趋势指标、差异性

3、指标和分布形状指标统计量销售额有效30N缺失0均值106.8333均值的标准误3.97755中值105.0000众数85.00 a标准差21.78592方差474.626偏度1.915偏度的标准误.427峰度6.297峰度的标准误.833全距111.00极小值79.00极大值190.00和3205.00a. 存在多个众数。显示最小值实验结果分析: 从统计量表可以看出有效样本数有 30 个,没有缺失值。平均销售额 是 106.8333 ,标准差为 21.78592 。 从频数分布表可以看出样本值、频数占总数的百分比、累计百分比。 从带正态曲线的直方图可以看出销售额集中在 110实验名称: 列联表

4、成绩:实验目的和要求: 绘制频数表、 相对频数表并进行显著性检验和关系 强度分析实验内容: 绘制频数表、相对频数表并分析 实验记录、问题处理:满意度 * 性别 交叉制表性别合计男性女性计数19827满意度 中的 %70.4%29.6%100.0%不满意性别 中的 %35.2%17.4%27.0%总数的 %19.0%8.0%27.0%计数232144满意度 中的 %52.3%47.7%100.0%满意度 一般性别 中的 %42.6%45.7%44.0%总数的 %23.0%21.0%44.0%计数121729满意度 中的 %41.4%58.6%100.0%满意性别 中的 %22.2%37.0%29

5、.0%总数的 %12.0%17.0%29.0%计数5446100满意度 中的 %54.0%46.0%100.0%合计性别 中的 %100.0%100.0%100.0%总数的 %54.0%46.0%100.0%卡方检验值df渐进 Sig. ( 侧)双Pearson 卡方4.825 a2.090似然比4.9312.085线性和线性组合4.6501.031有效案例中的 N100a. 0 单元格 (0.0%)的期望计数少于 5 。最小期望计数为12.42 。对称度量值近似值 Sig.220.090按标量标定Cramer 的 V.220.090有效案例中的 N100a. 不假定零假设。b. 使用渐进标准

6、误差假定零假设。实验结果分析:从卡方检验看出 sig0.05, 不显著。 所以男生女生对满意与否评价没有差异实验名称: 方差分析 成绩: 实验目的和要求: 单因子方差分析、多因子方差和协方差分析 实验内容: 进行单因子方差分析并输出方差分析表、 显著性检验及解 释结果、多因子方差和协方差分析并输出方差分析表和协方差分析 表、显著性检验及解释结果。实验记录、问题处理:单因子方差分析分析比较均值, 单因素键入销售额为因变量, 键入促销力度 为因子两两比较打钩 L 检验,选项方差齐性检验打钩得:ANOVA销售额平方和df均方F显著性组间7250.66722329.576170.891.000组内13

7、.50071.929总数7264.16729多因子方差分析分析一般线性模型, 单变量键入店内促销和赠券状态为固定 因子,销售额为因变量 两两比较打钩 L 检验,选项方差齐性检验 打钩,得:主体间效应的检验因变量 : 销售额源III 型平方和df均方FSig.校正模型162.667a532.53333.655.000截距1104.13311104.1331142.207.000店内促销106.067253.03354.862.000赠券状态53.333153.33355.172.000店内促销 * 赠券状态3.26721.6331.690.206误差23.20024.967总计1290.0003

8、0校正的总计185.86729a. R 方 = .875(调整 R 方 = .849)协方差分析 分析一般线性模型, 单变量键入店内促销和赠券状态为固定 因子,销售额为因变量,键入客源排序为协变量 两两比较打钩 L 检验,选项方差齐性检验打钩,得:主体间效应的检验因变量 : 销售额源III 型平方和df均方FSig.校正模型163.505a627.25128.028.000截距103.3461103.346106.294.000客源排序.8381.838.862.363店内促销106.067253.03354.546.000赠券状态53.333153.33354.855.000店内促销 * 赠

9、券状态3.26721.6331.680.208误差22.36223.972总计1290.00030校正的总计185.86729a. R 方 = .880(调整 R 方 = .848)实验结果分析: 单因子:组间显著性为 0.000 ,小于 0.05 ,显著影响。 多因子:店内促销和赠券状态显著性分别都为 0.000 ,小于 0.05 ,显 著影响。但是店内促销和赠券状态交互作用的显著性为 0.206 ,大于 0.05 ,不显著。协方差:经协变量客源排序的显著性为 0.363 ,对销售额影响不显著。 店内促销的显著性为 0.000 ,小于 0.05 ,对销售额影响显著。赠券状 态的显著性为 0.

10、000 ,小于 0.05 ,对销售额影响显著。店内促销和赠 券状态的交互作用显著性为 0.208 ,大于 0.05 ,对销售额影响不显著实验名称: 相关分析 成绩: 实验目的和要求: 计算 Pearson 相关系数和简单相关系数并分析 实验内容: 计算 Pearson 相关系数和简单相关系数并分析 实验记录、问题处理: 分析相关,双变量添加收、家庭人口、受教育程度、汽车保 有量默认 pearson 分析确定,得:相关性收入家庭人口家长受教育年数汽车保有量收入Pearson 相关性1-.008.327*.208*显著性(双侧).936.001.038N100100100100家庭人口Pearso

11、n 相关性-.0081.122.576*显著性(双侧).936.226.000N100100100100家长受教育年数Pearson 相关性.327*.1221*.207*显著性(双侧).001.226.039N100100100100汽车保有量Pearson 相关性.208*.576*.207*1显著性(双侧).038.000.039N100100100100*. 在 .01 水平(双侧)上显著相关。*. 在 0.05 水平(双侧)上显著相关。实验结果分析:1、收入对受教育年数,相关系数为 0.327 ,显著性为 0.001 ,小于 0.01 ,所以收入和受教育年为正向相关,且相关性很强。2

12、、收入对汽车保有量,相关系数为 0.208 ,显著性为 0.038 ,小于 0.05 ,所以收入对汽车保有量为正向相关。3、家庭人口对汽车保有量,相关系数为 0.576 ,显著性为 0.000 ,小 于 0.01 ,所以收入对汽车保有量为正向相关,且相关性很强。4、受教育年数对收入,相关系数为 0.327 ,显著性为 0.001 ,小于 0.01 ,所以受教育年数对收入为正想相关,且相关性很强。实验名称: 回归分析成绩:实验目的和要求: 掌握简单回归模型和多元回归分析的 SPSS操作方 法实验内容: 检验简单回归模型、绘制散点图、输出回归结果并分析、 残差分析;检验多元回归分析模型、 输出回归

13、结果并分析及残差分析。 实验记录、问题处理:一)简单回归得出模型汇总模型RR 方调整 R 方标准 估计的误 差1.754 a.569.5541.691a. 预测变量 : ( 常量), 促销水平Anovaa模型平方和df均方FSig.回归105.8001105.80036.999.000 b1残差80.067282.860总计185.86729a. 因变量 : 月均销售额b. 预测变量 : ( 常量), 促销水平系数模型非标准化系数标准系数tSig.B标准误差试用版1(常量)10.667.81713.059.000促销水平-2.300.378-.754-6.083.000a. 因变量 : 月均销

14、售额实验结果分析:R方为0.554,拟合优度一般。P值sig显著表达式:销售额 =10.667-2.3*促销水平二)多元线性回归得:模型汇总模型RR 方调整 R 方标准 估计的误 差1.754 a.569.5541.6912.925 b.856.846.995a. 预测变量 : ( 常量), 店内促销。b. 预测变量 : ( 常量), 店内促销 , 赠券状态Anovaa模型平方和df均方FSig.回归105.8001105.80036.999.000 b1残差80.067282.860总计185.86729回归159.133279.56780.360.000 c2残差26.73327.990总

15、计185.86729a. 因变量 : 销售额b. 预测变量 : ( 常量), 店内促销。c. 预测变量 : ( 常量), 店内促销 , 赠券状态系数模型非标准化系数标准系数tSig.B标准误差试用版1(常量)10.667.81713.059.000店内促销-2.300.378-.754-6.083.000(常量)14.667.72720.183.0002店内促销-2.300.222-.754-10.337.000赠券状态-2.667.363-.536-7.339.000a. 因变量 : 销售额实验结果分析:R方在第二次拟合达到 0.856 ,说明模型的拟合的情况非常好 方差分析表显示 P值 s

16、ig0.05 ,说明模型非常显著。 表达式: 销售额=14.667-2.3*店内促销 -2.667*赠券状态实验名称: Logistic 回归 成绩: 实验目的和要求: 掌握 Logistic 回归分析的 SPSS操作方法 实验内容: 估计和检验 Logistic 回归系数并解释结果。实验记录、问题处理:得出:分类表已预测已观测品牌忠诚百分比校正01步骤 1 品牌忠诚 012380.0131280.0总计百分比80.0a. 切割值为 .500方程中的变量BS.E,WalsdfSig.Exp (B)步骤 1 a 品牌态度1.274.4797.0751.0083.575产品态度.186.322.3

17、351.5631.205购物态度.590.4911.4421.2301.804常量-8.6423.3466.6721.010.000a. 在步骤 1 中输入的变量 : 品牌态度 , 产品态度 , 购物态度实验结果分析:结果显示:品牌忠诚 =1.274* 品牌态度 +0.186* 产品态度 +0.590* 购物态度 -8.462 其中品牌态度的 sig 小于 0.05, 所以品牌态度与品牌购买正向变化显 著。但是因为产品态度和购物态度的 sig 大于 0.05 ,所以这两个变量与 品牌购买的正向变化不显著成绩:实验名称: 因子分析实验目的和要求:掌握因子分析的 SPSS操作方法实验内容: KMO

18、和 Barlett 氏检验;输出碎石图及旋转前后的因子矩 阵;各因子的特征值和解释的方差比例;解释因子并命名;计算因子 得分。实验记录、问题处理:步骤处理: 分析降维因子分析球形度检验将度量变量键入变量框, 选取描述,勾选 KMO与 bartlett 选取抽取,勾选碎石图 选取旋转,勾选载荷图选取得分,勾选保存变量和因子得分系数矩阵如图所示:KMO和 Bartlett的检验取样足够度的 Kaiser-Meyer-Olkin度量。.589Bartlet近似卡方101.749t 的球形度检验df15Sig.000解释的总方差成份初始特征值提取平方和载入合计方差的 %累积 %合计方差的 %累积 %1

19、2.56942.82142.8212.56942.82142.82122.27237.86880.6902.27237.86880.6903.4317.18887.8784.3455.74393.6215.3055.09198.7126.0771.288100.000提取方法:主成份分析成份矩阵成份12预防蛀牙牙齿亮泽保护牙根口气清新 不预防坏牙 富有魅力.940-.241.930-.311-.808-.112.189.814.059.800-.386.884提取方法 : 主成分分析法。a. 已提取了 2 个成份。旋转成份矩阵成份12预防蛀牙.957-.047牙齿亮泽-.034.849保护牙根

20、.916-.171口气清新-.105.852不预防坏牙-.878-.176富有魅力.108.884提取方法 : 主成分分析法。旋转法 : 具有 Kaiser 标准化的正交旋 转法。a. 旋转在 3 次迭代后收敛。成份得分系数矩阵成份12预防蛀牙.366.083牙齿亮泽-.094.358保护牙根.362.026口气清新-.121.352不预防坏牙-.315-.170富有魅力-.044.389提取方法 : 主成分分析法。 构成得分。实验结果分析:KMO值为 0.589 , sig 值为 0.000 ,适合作因子分析 各因子的特征值和解释的方差比例可以在“解释的总方差”中看出, 其中我们可以知道,

21、特征值 2.569 和 2.272 可以解释方差比例分别是 42.821%和 37.868%。因为因子 1 在预防蛀牙、保护牙根有很大载荷, 所以将其命名为保健 因子。因子 2 在牙齿亮泽、口气清新、富有魅力有很大载荷,所以将 其命名为社交因子。计算因子得分,得保健因子 =0.366* 预防蛀牙 -0.094* 牙齿亮泽 +0.362* 保护牙龈-0.121* 口气清新 -0.315* 不预防坏牙 -0.044* 富有魅力 社交因子 =0.083* 预防蛀牙 +0.358* 牙齿亮泽 +0.026* 保护牙根+0.352* 口气清新 -0.170* 不预防坏牙 +0.389* 富有魅力实验名称

22、: 聚类分析 成绩: 实验目的和要求: 掌握分层聚类和 K-means聚类的 SPSS操作方法 实验内容: 进行分层聚类和 K-means聚类分析并输出结果。 实验记录、问题处理:分层聚类:步骤处理:分析分类系统聚类将度量变量键入变量框, 勾选统计量中的聚类成员中的方案范围, 并 且设置为最小 3 最大 5.勾选绘制中的树状图 打开保存选项卡,勾选聚类成员中的方案范围,设置最小 3 最大 5阶12345678910111213141516171819结果如图所示:聚类表群集组合群集 1群集 2系数14162.000672.00010143.0002133.0005113.000383.0006

23、124.0004104.333594.500165.0004197.2505207.3331178.2502510.7501311.30011514.00041820.2002438.6111248.292首次出现阶群集下一阶群集 1群集 200300701800140090015201003115012071380179014100154121813616150191101814171916180案例5 群集群集成员4 群集3 群集121321112321234315321213211123212313143212132111232123131332123456789101112131415

24、1617181920* * * * * * * * * * * * * * * * * * * H I E R A R C H I C A L C L U S T E R A N AL Y S I S * * * * * * * * * * * * * * * * * * *Dendrogram using Average Linkage (Between Groups)Rescaled Distance Cluster Combine TOC o 1-5 h z C A S E 0 5 10 15 20 25 Label Num +14 -+16 -+-+-+ +-+-+ +19 + +18 + |2 -+ +13 -+ | | |-+-+ + |-+ +-+ |9-+ +-+|20 + |3-+|8 -+|-+-+ +-+|-+ | |-+-+ | +1 -+ +-+ |17 + |15 +K均值聚类: 步骤处理: 分析分类 K 聚类 将变量键入变量框, 勾选保存中的聚类成员 勾选选项中的是统计量下的三个复选框 如图所示:聚类12购物有趣71购物导致超支33购物与就歺结合72争取最合算交易42对购物没兴趣16比较价格省钱44初

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论