版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在实数,0,4中,最大的是()AB0CD422cos 30的值等于()A1BCD23在函数y中,自变量x的取值范围是( )Ax1Bx1且x0Cx0且x1Dx0且x14下列运算结果正确的是()A(x3x2+x)x=x
2、2x B(a2)a3=a6 C(2x2)3=8x6 D4a2(2a)2=2a25某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是()A0.15B0.2C0.25D0.36如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变7在0,2,3,四个数中,最小的数是()A0B2C3D8如图,若ab,1=60,则2的度数为()A40B60C120D1509已知a-2b=-2,则4-2a+4
3、b的值是()A0B2C4D810正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A30B60C120D180二、填空题(共7小题,每小题3分,满分21分)11如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_12如图,AGBC,如果AF:FB3:5,BC:CD3:2,那么AE:EC_13 “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车
4、费若设参加游览的同学一共有x人,为求x,可列方程_14如图,已知P是正方形ABCD对角线BD上一点,且BPBC,则ACP度数是_度15因式分解:3x2-6xy+3y2=_16如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F然后再展开铺平,以B、E、F为顶点的BEF称为矩形ABCD的“折痕三角形”如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕BEF”面积最大时,点E的坐标为_17已知,如图,ABC中,DEFGBC,ADDFFB123,若EG3,则AC 三、解答题(共7小题,满分69分)18(10分)如图,在中,点是的中点,点是线段
5、的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.求证:四边形是平行四边形.若,则在点的运动过程中:当_时,四边形是矩形;当_时,四边形是菱形.19(5分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上 年龄组x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(
6、1)该市男学生的平均身高从 岁开始增加特别迅速(2)求直线AB所对应的函数表达式(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?20(8分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙
7、工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少21(10分)如图,在ABC中,ABAC,AE是BAC的平分线,ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F(1)求证:AE为O的切线;(2)当BC=4,AC=6时,求O的半径;(3)在(2)的条件下,求线段BG的长22(10分)如图(1),P 为ABC 所在平面上一点,且APB=BPC=CPA=120,则点 P 叫做ABC 的费马点(1)如果点 P 为锐角ABC 的费马点,且ABC=60求证:ABPBCP;若 PA=3,PC=4,则 PB=
8、 (2)已知锐角ABC,分别以 AB、AC 为边向外作正ABE 和正ACD,CE 和 BD相交于 P 点如图(2)求CPD 的度数;求证:P 点为ABC 的费马点23(12分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修供电局距离抢修工地15千米抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度24(14分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个
9、B品牌的足球共需360元求A,B两种品牌的足球的单价求该校购买20个A品牌的足球和2个B品牌的足球的总费用参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据实数的大小比较即可得到答案.【详解】解:161725,45,04,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、C【解析】分析:根据30角的三角函数值代入计算即可.详解:2cos30=2=故选C点睛:此题主要考查了特殊角的三角函数值的应用,熟记30、45、60角的三角函数值是解题关键.3、C【解析】根
10、据分式和二次根式有意义的条件进行计算即可【详解】由题意得:x2且x22解得:x2且x2故x的取值范围是x2且x2故选C【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键4、C【解析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得【详解】A、(x3-x2+x)x=x2-x+1,此选项计算错误;B、(-a2)a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数
11、幂的乘法、积的乘方与幂的乘方及合并同类项法则5、B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故选B.6、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,
12、第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.7、B【解析】根据实数比较大小的法则进行比较即可【详解】在这四个数中30,0,-20,-2最小故选B【点睛】本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小8、C【解析】如图:1=60,3=1=60,又ab,2+3=180,2=120,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的
13、性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.9、D【解析】a-2b=-2,-a+2b=2,-2a+4b=4,4-2a+4b=4+4=8,故选D.10、C【解析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120,故选C【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、4x=5(x-4)【解析】按照面积
14、作为等量关系列方程有4x=5(x4).12、3:2;【解析】由AG/BC可得AFG与BFD相似 ,AEG与CED相似,根据相似比求解.【详解】假设:AF3x,BF5x ,AFG与BFD相似AG3y,BD5y由题意BC:CD3:2则CD2yAEG与CED相似AE:EC AG:DC3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.13、 =1【解析】原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:=1故答案是:=114、22.5【解析】ABCD是正方形,DBC=BCA=45,BP=BC,BCP=BPC=(180-45)=67.5,ACP度数是67
15、.5-45=22.515、3(xy)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x16xy+3y1=3(x11xy+y1)=3(xy)1考点:提公因式法与公式法的综合运用16、(,2)【解析】解:如图,当点B与点D重合时,BEF面积最大,设BE=DE=x,则AE=4-x,在RTABE中,EA2+AB2=BE2,(4-x)2+22=x2,x=,BE=ED=,AE=AD-ED=,点E坐标(,2)故答案为:(,2)【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键17、1【解析】试题分析:根据DEFGBC可得ADEAFGABC,根据题意可得EG:AC=DF:AB=
16、2:6=1:3,根据EG=3,则AC=1考点:三角形相似的应用三、解答题(共7小题,满分69分)18、 (1)、证明过程见解析;(2)、2;、1【解析】(1)、首先证明BEF和DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、根据矩形得出CEB=90,结合ABC=120得出CBE=60,根据直角三角形的性质得出答案;、根据菱形的性质以及ABC=120得出CBE是等边三角形,从而得出答案【详解】(1)、证明:ABCD,CDF=FEB,DCF=EBF,点F是BC的中点,BF=CF,在DCF和EBF中,CDF=FEB,DCF=EBF,FC=BF,EBFDCF(AAS), DC
17、=BE, 四边形BECD是平行四边形;(2)、BE=2;当四边形BECD是矩形时,CEB=90,ABC=120,CBE=60;ECB=30,BE=BC=2,BE=1,四边形BECD是菱形时,BE=EC,ABC=120,CBE=60,CBE是等边三角形,BE=BC=1【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键19、(1)11;(2)y3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右【解析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可
18、(3)先设函数表达式,选取两个点带入求值,把带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式图象经过点则,解得即直线AB所对应的函数表达式:(3)设直线CD所对应的函数表达式为:,得,即直线CD所对应的函数表达式为:把代入得即该市18岁男生年龄组的平均身高大约是174cm左右【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.20、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程【解析】(1)设甲工程
19、队单独完成该工程需x天,则乙工程队单独完成该工程需2x天再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成针对每一种情况,分别计算出所需的工程费用【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.根据题意得:方程两边同乘以,得解得:经检验,是原方程的解.当时,.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工
20、程队单独完成.所需费用为:(万元);方案二:由乙工程队单独完成.所需费用为:(万元);方案三:由甲乙两队合作完成.所需费用为:(万元).应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键21、(1)证明见解析;(2);(3)1. 【解析】(1)连接OM,如图1,先证明OMBC,再根据等腰三角形的性质判断AEBC,则OMAE,然后根据切线的判定定理得到AE为O的切线;(2)设O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明AOMABE,则利用相似比得到,然后解关于r的方程即可;(3)作OHBE于H
21、,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1【详解】解:(1)证明:连接OM,如图1,BM是ABC的平分线,OBM=CBM,OB=OM,OBM=OMB,CBM=OMB,OMBC,AB=AC,AE是BAC的平分线,AEBC,OMAE,AE为O的切线;(2)解:设O的半径为r,AB=AC=6,AE是BAC的平分线,BE=CE=BC=2,OMBE,AOMABE,即,解得r=,即设O的半径为;(3)解:作OHBE于H,如图,OMEM,MEBE,四边形OHEM为矩形,HE=OM=,BH=BEHE=2=,OHBG,BH=HG=,BG
22、=2BH=122、(1)证明见解析;23;(2)60;证明见解析;【解析】试题分析:(1)根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到1=2,再由对顶角相等,得到5=6,即可求出所求角度数;由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到APF为60,由APD+DPC,求出APC为120,进而确定出APB与BPC都为120,即可得证试题解析:(1)证明:PAB+PBA=180APB=60,PBC+PBA=ABC=60,PAB=PBC,又APB=BPC=120,ABPBCP,解:ABPBCP,PAPB=PBPC,PB2=PAPC=12,P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024中介服务项目协议
- 2024适用房产中介购房协议格式范本
- 2024年期建筑工人劳务承揽协议
- 2024年专利技术许可格式协议
- 2024年化玉米购销协议模板
- 2024届安徽省安庆二中、天成中学高中数学试题竞赛模拟(二)试题
- 2023-2024学年浙江省镇海中学高三高考冲刺第一次考试数学试题
- 2024年安全烟花爆竹零售协议样本
- 2024年材料采购协议典范
- 2024年度商品采购协议样式
- 开展法律宣传知识讲座
- 连锁经营与管理职业生涯规划书
- 傅青主女科之带下病
- 2024年八年级语文上册期末专项复习:病句的辨识与修改
- 法院服务外包电子卷宗随案生成扫描服务方案
- 浙教版劳动二年级上册全册教案
- 智能控制导论 第4版 课件全套 蔡自兴 第1-12章 概论、递阶控制-人工智能的发展简史与展望
- 女子校长张桂梅
- 医学影像技术大学本科生生涯发展展示
- 2023年12月徐州市“三支一扶”服务期满考核合格人员专项招考笔试历年高频考点难、易错点荟萃附答案带详解
- 食品智能技术加工专业职业规划
评论
0/150
提交评论