2022届贵州省六盘水市中考数学四模试卷含解析_第1页
2022届贵州省六盘水市中考数学四模试卷含解析_第2页
2022届贵州省六盘水市中考数学四模试卷含解析_第3页
2022届贵州省六盘水市中考数学四模试卷含解析_第4页
2022届贵州省六盘水市中考数学四模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1实数 的相反数是 ( )A-BCD2甲车行驶3

2、0千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )ABCD3如图,在O中,弦AB=CD,ABCD于点E,已知CEED=3,BE=1,则O的直径是()A2BC2D546的倒数是()A16B16C6D65计算31的结果是()A2 B2 C4 D46在平面直角坐标系中,函数的图象经过( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限7如图1,将三角板的直角顶点放在直角尺的一边上,1=30,2=50,则3的度数为A80B50C30D208当x=1时,代数式x3+x+m的值是7,则当x=1时,这个代

3、数式的值是()A7B3C1D79如图图形中,既是轴对称图形,又是中心对称图形的是()ABCD10如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角的度数为()A120B140C150D160二、填空题(本大题共6个小题,每小题3分,共18分)11双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则 12王经理到襄阳出差带回襄阳特产孔明菜若干袋,分给朋友们品尝如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王

4、经理带回孔明菜_袋13规定:,如:,若,则_.14在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是_千米15方程x+1=的解是_16如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF=_三、解答题(共8题,共72分)17(8分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表对雾霾了解程度的统计表 对雾霾的了解程度百分比A非常了解

5、5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题:统计表中:m ,n ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?18(8分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50

6、名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?19(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图请根据图中信息解决下列问题:(1)共有 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少20(8分)已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D(I)如图,若B

7、C为O的直径,求BD、CD的长;(II)如图,若CAB=60,求BD、BC的长21(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图22(10分)如图,抛物线y=ax2+ax12a(a0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N(1)求点A、B

8、的坐标;(2)若BN=MN,且SMBC=,求a的值;(3)若BMC=2ABM,求的值23(12分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球109.59.510899.5971045.5109.59.510篮球9.598.58.5109.510869.5109.598.59.56整理、描述数据:按如下分数段整理、描述这两组样本数据: (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不

9、合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.759.510篮球8.819.259.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_的看法,理由为_.(至少从两个不同的角度说明推断的合理性)24为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整

10、表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有 名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据相反数的定义即可判断.【详解】实数 的相反数是-故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.2、C【解析】由实际问题抽象出方程(行程问题)【分析】甲车的速度为千米/小时,则乙甲车的速度为千米/小时甲车行

11、驶30千米的时间为,乙车行驶40千米的时间为,根据甲车行驶30千米与乙车行驶40千米所用时间相同得故选C3、C【解析】作OHAB于H,OGCD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可【详解】解:作OHAB于H,OGCD于G,连接OA,由相交弦定理得,CEED=EABE,即EA1=3,解得,AE=3,AB=4,OHAB,AH=HB=2,AB=CD,CEED=3,CD=4,OGCD,EG=1,由题意得,四边形HEGO是矩形,OH=EG=1,由勾股定理得,OA=,O的直径为,故选C【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据

12、图形作出相应的辅助线是解本题的关键4、A【解析】解:6的倒数是16故选A5、D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1故选D.6、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b当k0,bO时,图象过一、二、三象限,据此作答即可【详解】一次函数y=3x+1的k=30,b=10,图象过第一、二、三象限,故选A【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.7、D【解析】试题分析:根据平行线的性质,得4=2=50,再根据三角形的外角的性质3=4-1=50-30=20故答案选D考点:平行线的性质;三角形的外角的性质8、B【解析】因为

13、当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B9、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.10、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为

14、,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,)ACy轴,AEx轴,C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为aB点、D点在上,当y=时,x=;当x=a,y=B点坐标为(,),D点坐标为(a,)AB=a=,AC=a,AD=,AE=AB=AC,AD=AE又BAD=CAD,BADCAD12、33.【解析】试题分析:设品尝孔明菜的朋友有x人,依题意得,5x36x3,

15、解得x6,所以孔明菜有5x333袋.考点:一元一次方程的应用.13、1或-1【解析】根据ab=(a+b)b,列出关于x的方程(2+x)x=1,解方程即可【详解】依题意得:(2+x)x=1,整理,得 x2+2x=1,所以 (x+1)2=4,所以x+1=2,所以x=1或x=-1故答案是:1或-1【点睛】用配方法解一元二次方程的步骤:把原方程化为ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一

16、个负数,则判定此方程无实数解14、【解析】本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.故答案为6.【点睛】本题主要考查比例尺和比例线段的相关知识.15、x=1【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1故答案为x=116、15【解析】根据平行四边形的性质和圆的半径相等得到AO

17、B为等边三角形,根据等腰三角形的三线合一得到BOFAOF30,根据圆周角定理计算即可【详解】解答:连接OB,四边形ABCO是平行四边形,OC=AB,又OA=OB=OC,OA=OB=AB,AOB为等边三角形.OFOC,OCAB,OFAB,BOF=AOF=30.由圆周角定理得 ,故答案为15.三、解答题(共8题,共72分)17、(1)20;15%;35%;(2)见解析;(3)126【解析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360计算即可得解【详解】

18、解:(1)非常了解的人数为20,60400100%=15%,15%15%45%=35%,故答案为20;15%;35%;(2)D等级的人数为:40035%=140,补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:36035%=126【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小18、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).【解析】(1)根据中位数、众数的定义解答即可;(

19、2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=【点睛】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.19、(1)100;(2)补图见解析;(3)570人.【解析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读

20、4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例【详解】(1)参与问卷调查的学生人数为(8+2)10%=100人,故答案为:100;(2)读4本的女生人数为10015%10=5人,读2本人数所占百分比为20+18100100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为150038%=570人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小

21、20、(1)BD=CD=5;(2)BD=5,BC=5【解析】(1)利用圆周角定理可以判定DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图,连接OB,OD由圆周角定理、角平分线的性质以及等边三角形的判定推知OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)BC是O的直径,CAB=BDC=90AD平分CAB,CD=BD在直角BDC中,BC=10,CD2+BD2=BC2,BD=CD=5,(2)如图,连接OB,OD,OC,AD平分CAB,且CAB=60,DAB=CAB=30,DOB=2DAB=60又OB=OD,OBD是等边三角形,BD=OB=OD

22、O的直径为10,则OB=5,BD=5,AD平分CAB,ODBC,设垂足为E,BE=EC=OBsin60=,BC=5【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型21、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增

23、长率,可求出第三次测试合格人数,根据不合格总人数参加测试的总人数100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合格人数的中位数是(40+50)21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)41(人),第四次测试合格人数为121872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(3)50(1+20%)60(人),(60+40+30+50)(38

24、+60+50+40+60+30+72+50)100%1%,11%55%补全条形统计图与扇形统计图如解图所示【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据22、(1)A(4,0),B(3,0);(2);(3).【解析】(1)设y=0,可求x的值,即求A,B的坐标;(2)作MDx轴,由COMD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据SBMC=,可求a的值;(3)过M点作MEAB,设NO=m,k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果【详解】(1)设y=0,则0=ax2+ax12a (a0),x1=4,x2=3,A(4,0),B(3,0)(2)如图1,作MDx轴,MDx轴,OCx轴,MDOC,=且NB=MN,OB=OD=3,D(3,0),当x=3时,y=6a,M(3,6a),M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论