版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,正方形ABCD内接于圆O,AB4,则图中阴影部分的面积是( )ABCD2如图,半径为的中,弦,所对的圆心角分别是,若,则弦的长等于( )ABCD3如图是用八块相同的小正方体搭建的几何体,它的左视图是( )ABCD4已知反
2、比例函数y=的图象在一、三象限,那么直线y=kxk不经过第()象限A一B二C三D四5如图,小明从A处出发沿北偏东60方向行走至B处,又沿北偏西20方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A右转80B左转80C右转100D左转1006 “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )ABCD7在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标
3、差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah例如:三点坐标分别为A(1,2),B(3,1),C(2,2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1若D(1,2)、E(2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A3或7 B4或6 C4或7 D3或68如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,ABC=90,CAx轴,点C在函数y=(x0)的图象上,若AB=2,则k的值为()A4B2C2D9用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD10根据物理学家波义耳1
4、662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k0),下列图象能正确反映p与v之间函数关系的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11已知x1,x2是方程x2+6x+30的两实数根,则的值为_12高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一
5、个出口的编号是_.13化简:32-3-24-6-3=_14已知,且,则的值为_15=_16如图,点 A 是反比例函数 y(x0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为_17如图,直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,那么当y1y2时,x的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图,求证:。19(5分)已知OA,OB是O的半径,且OAOB,垂足为O,P是射线OA上的一点(点A除外),直线BP交O于点Q,
6、过Q作O的切线交射线OA于点E(1)如图,点P在线段OA上,若OBQ=15,求AQE的大小;(2)如图,点P在OA的延长线上,若OBQ=65,求AQE的大小20(8分)如图,在ABC中,ABAC4,A36在AC边上确定点D,使得ABD与BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)21(10分)如图,在ABC中,BAC=90,AB=AC,D为AB边上一点,连接CD,过点A作AECD于点E,且交BC于点F,AG平分BAC交CD于点G.求证:BF=AG.22(10分)(1)计算:22+(1)0+2sin60(2)先化简,再求值:(),其中x=123(12分)如图,直线
7、y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?24(14分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距
8、20千米时,求x的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】连接OA、OB,利用正方形的性质得出OA=ABcos45=2,根据阴影部分的面积=SO-S正方形ABCD列式计算可得【详解】解:连接OA、OB,四边形ABCD是正方形,AOB=90,OAB=45,OA=ABcos45=4=2,所以阴影部分的面积=SO-S正方形ABCD=(2)2-44=8-1故选B【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式2、A【解析】作AHBC于H,作直径CF,连结BF,先利用等角的补角相等得到DAE=BAF,然后再根据同圆中,相等的圆
9、心角所对的弦相等得到DE=BF=6,由AHBC,根据垂径定理得CH=BH,易得AH为CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解解:作AHBC于H,作直径CF,连结BF,如图,BAC+EAD=120,而BAC+BAF=120,DAE=BAF,弧DE弧BF,DE=BF=6,AHBC,CH=BH,CA=AF,AH为CBF的中位线,AH=BF=1,BC2BH2故选A“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半也考查了垂径定理和三角形中位线性质3、B【解析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图
10、形进行分析,即可得出答案【详解】左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,故选B【点睛】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图4、B【解析】根据反比例函数的性质得k0,然后根据一次函数的进行判断直线y=kx-k不经过的象限【详解】反比例函数y=的图象在一、三象限,k0,直线y=kxk经过第一、三、四象限,即不经过第二象限故选:B【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k0);
11、把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数与一次函数的性质5、A【解析】60+20=80由北偏西20转向北偏东60,需要向右转故选A6、C【解析】分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基
12、本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.故选C.点睛:考查函数的图象,正确理解题目的意思是解题的关键.7、C【解析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 2或t1两种情况进行求解即可.【详解】解:由题可知a=3,则h=183=6,则可知t2或t1.当t2时,t-1=6,解得t=7;当t1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.8、A【解析】【分析】作BDAC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD
13、=AD=CD=,再利用ACx轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作BDAC于D,如图,ABC为等腰直角三角形,AC=AB=2,BD=AD=CD=,ACx轴,C(,2),把C(,2)代入y=得k=2=4,故选A【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.9、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A10、C【解析】【分析】根据题意有:pv=k(k为常数,k0),故p与v之间的函数图象为
14、反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】pv=k(k为常数,k0)p=(p0,v0,k0),故选C【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:,是方程的两实数根,由韦达定理,知,=1,即的值是1故答案为1考点:根与系数的关系12、B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟
15、的通过数量发现得到D疏散乘客比A快;同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题13、6【解析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】32-3-24-6-3=6-3-26-3+6=-6,故答案为-614、1【解析】分析:直接利用已知比例
16、式假设出a,b,c的值,进而利用a+b-2c=6,得出答案详解:,设a=6x,b=5x,c=4x,a+b-2c=6,6x+5x-8x=6,解得:x=2,故a=1故答案为1点睛:此题主要考查了比例的性质,正确表示出各数是解题关键15、2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:.16、4【解析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,m=2,m=2,S阴=S正方形-S圆=4-,故答案为4-【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知
17、识解决问题17、1x2【解析】根据图象得出取值范围即可【详解】解:因为直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,所以当y1y2时,1x2,故答案为1x2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围三、解答题(共7小题,满分69分)18、见解析【解析】据1=2可得BAC=EAD,再加上条件AB=AE,C=D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA
18、、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角19、(1)30;(2)20;【解析】(1)利用圆切线的性质求解;(2) 连接OQ,利用圆的切线性质及角之间的关系求解。【详解】(1)如图中,连接OQEQ是切线,OQEQ,OQE=90,OAOB,AOB=90,AQB=AOB=45,OB=OQ,OBQ=OQB=15,AQE=901545=30(2)如图中,连接OQOB=OQ,B=OQB=65,BOQ=50,AOB=90,AOQ=40,OQ=OA,OQA=OAQ=70,EQ是切线,OQE=90,AQE=9070
19、=20【点睛】此题主要考查圆的切线的性质及圆中集合问题的综合运等.20、【解析】作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长【详解】如图所示,作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,ACBD36,CC,ABCBDC,设BCBDADx,则CD4x,BC2ACCD,x24(4x),解得x1,x2(舍去),BC的长【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作21、见解析【解析】根据角平分线的性质和直角
20、三角形性质求BAF=ACG.进一步证明ABFCAG,从而证明BF=AG.【详解】证明:BAC=90,AB=AC,B=ACB=45,又AG平分BAC,GAC=BAC=45,又BAC=90,AECD,BAF+ADE=90,ACG +ADE=90,BAF=ACG. 又AB=CA,ABFCAG(ASA),BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.22、(1) (2) 【解析】(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【详解】解
21、:(1)原式=+1+2=+1+=;(2)原式=,当x=1时,原式=【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法23、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预算执行反馈机制计划
- 2024-2025学年年七年级数学人教版下册专题整合复习卷28.1~28.2 阶段性复习(含答案)-
- 持续反馈环节在生产计划中的必要性
- 岩石矿物标准物质相关行业投资方案
- 水泥运输委托协议三篇
- 冷箱行业相关投资计划提议
- 工程塑料尼龙系列相关行业投资规划报告范本
- 再生资源仓库管理方案计划
- 跨部门合作的工作流程计划
- 睡眠健康借款合同三篇
- 国开2024年秋《国际经济法》形考任务1-4答案
- 2023年山西大同平城区司法协理员招聘考试试题及答案
- 年加工3万吨大米改建项目可行性实施报告
- 2024年车辆牌照租赁协议标准版本(四篇)
- 国家开放大学本科《当代中国政治制度》期末纸质考试总题库2025珍藏版
- 《庖丁解牛》-中职高一语文教与学同步课件(高教版2023基础模块上册)
- 微信视频号运营服务协议合同(2024版)
- 2025届太原市重点中学九年级物理第一学期期末质量检测模拟试题含解析
- 沪教版小学牛津英语2a期末综合复习试卷2(含听力内容)
- 2024CSCO结直肠癌诊疗指南解读
- 幼儿园小小美食食谱播报员播报课件
评论
0/150
提交评论