版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高三数学上册期末必备知识点:易错易混考点78条查字典数学网为大家整理了高三数学上册期末必备知识点:易错易混考点78条,希望对2019届高三考生在数学备考中有所帮助,欢送大家阅读作为参考。一、集合与函数1.进展集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进展求解。2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的互相关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否认形式的区别。6.求解与函数有关的问题易忽略定义域优先的原那么。7.判断函数奇偶性时,易忽略检验函数定义域是否关于
2、原点对称。8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。9.原函数在区间-a,a上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。10.你纯熟地掌握了函数单调性的证明方法吗?定义法取值, 作差, 判正负和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。12.求函数的值域必须先求函数的定义域。13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围恒成立问题。这几种根本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗
3、?真数大于零,底数大于零且不等于1字母底数还需讨论15.三个二次哪三个二次?的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。假设原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式18.利用均值不等式求最值时,你是否注意到:一正;二定;三等。19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用根轴法解整式分式不等式的本卷须知是什么?21.解含参数不等式的通法是定义域为前提,函数的单调
4、性为根底,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是。22. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。23. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意同号可倒即a?b?0,a三、数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进展讨论了吗?25.在,求的问题中,你在利用公式时注意到了吗?时,应有需要验证,有些题目通项是分段函数。26.你知道存在的条件吗?你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列
5、单调性问题能否等同于对应函数的单调性问题?数列是特殊函数,但其定义域中的值不是连续的。28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。四、三角函数29.正角、负角、零角、象限角的概念你清楚吗?,假设角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边一样的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线正弦线、余弦线、正切线的定义你知道吗?31. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32. 你还记得三角化简的通性通法吗?切割化弦、降幂公式、用三
6、角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次33. 反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?要注意数形结合与书写标准,可别忘了,你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:1函数的图象的平移为左+右-,上+下-如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即。2方程表示的图形的平移为左+右-,上-下+如直线左移2个个单位且下移3个单位得到的图象的解析式为
7、,即。3点的平移公式:点按向量平移到点,那么。37.在三角函数中求一个角时,注意考虑两方面了吗?先求出某一个三角函数值,再断定角的范围38.形如的周期都是,但的周期为。39.正弦定理时易忘比值还等于2R。五、平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。41.数量积与两个实数乘积的区别:在实数中:假设,且ab=0,那么b=0,但在向量的数量积中,假设,且,不能推出。实数,且,那么a=c,但在向量的数量积中没有。在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。42.是向量与平行的充分而不必要条
8、件,是向量和向量夹角为钝角的必要而不充分条件。六、解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。45.直线的倾斜角、到的角、与的夹角的取值范围依次是。46. 定比分点的坐标公式是什么?起点,中点,分点以及值可要搞清,在利用定比分点解题时,你注意到了吗?47. 对不重合的两条直线建议在解题时,讨论后利用斜率和截距48. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。49.解决线性规划问题的根本步骤是什么?请你注意解题格式和完好的文字表达。设
9、出变量,写出目的函数写出线性约束条件画出可行域作出目的函数对应的系列平行线,找到并求出最优解应用题一定要有答。50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53. 通径是抛物线的所有焦点弦中最短的弦。想一想在双曲线中的结论?54. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只
10、有一个交点,判别式的限制。求交点,弦长,中点,斜率,对称,存在性问题都在下进展。55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?七、立体几何56.你掌握了空间图形在平面上的直观画法吗?斜二测画法。57.线面平行和面面平行的定义、断定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联络和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?一面、四线、三垂直、立柱即面的垂线是关键一面四直线,立柱是关键,垂直三处见59.线面平行的断定定理和性质定理在应
11、用时都是三个条件,但这三个条件易混为一谈;面面平行的断定定理易把条件错误地记为一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行而导致证明过程跨步太大。60.求两条异面直线所成的角、直线与平面所成的角和二面角时,假如所求的角为90,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。61.异面直线所成角利用平移法求解时,一定要注意平移后所得角等于所求角或其补角,特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。62.你知道公式:和中每一字母的意思吗?可以纯熟地应用它们解题吗?63. 两条异面直线所成的角的范围:0?90直线与平面所成的
12、角的范围:0o二面角的平面角的取值范围:018064.你知道异面直线上两点间的间隔 公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的不变量与不变性。66.立几问题的求解分为作,证,算三个环节,你是否只注重了作,算,而无视了证这一重要环节?死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生才能开展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为进步学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背与进步学生素质并不矛盾。相反,它恰是进步学生语文程度的重要前提和根底。家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗读儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读才能进步很快。67.棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?注意运用向量的方法解题68.球及其性质;经纬度定义易混。 经度为二面角,纬度为线面角、球面间隔 的求法;球的外表积和体积公式。 这些知识你掌握了吗?一般说来,“老师概念之形成经历了非常漫长的历史。杨士勋唐初学者,四门博士?春秋谷梁
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《室内系统设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《网球》2022-2023学年第一学期期末试卷
- 淮阴师范学院《国学经典选读》2022-2023学年第一学期期末试卷
- 淮阴工学院《数据通信技术》2022-2023学年第一学期期末试卷
- 淮阴师范学院《播音与主持》2022-2023学年第一学期期末试卷
- DB3707121-2024小麦良种生产技术规程
- 低温仓储与食品冷链物流考核试卷
- 光纤激光器的原理与应用考核试卷
- 初等教育中的科学教育与创新考核试卷
- 电气设备安装安装调试考核试卷
- 《大医精诚》说课(新)
- 牛羊屠宰管理办法
- 《微观经济学》课程思政教学案例(一等奖)
- DBJ50T-232-2016 建设工程监理工作规程
- 国际人力资源管理课程教学大纲
- 深信服园区级双活数据中心
- T-CSCS 016-2021 钢结构制造技术标准
- DB37∕T 5031-2015 SMC玻璃钢检查井应用技术规程
- 回弹强度对应表
- DB32T 3713-2020 高速公路建设工程施工班组管理规范
- (完整版)气管插管技术PPT课件
评论
0/150
提交评论