2022年【首发】河北省衡水市枣强县中考数学模拟精编试卷含解析_第1页
2022年【首发】河北省衡水市枣强县中考数学模拟精编试卷含解析_第2页
2022年【首发】河北省衡水市枣强县中考数学模拟精编试卷含解析_第3页
2022年【首发】河北省衡水市枣强县中考数学模拟精编试卷含解析_第4页
2022年【首发】河北省衡水市枣强县中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均

2、每亩产量为x万千克,根据题意,列方程为()A=10B=10C=10D +=102今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )Ax(x-60)=1600Bx(x+60)=1600C60(x+60)=1600D60(x-60)=16003若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )AB1CD4已知二次函数y=x2+bx9图象上A、B两点关于原点对称,若经过A点的反比例函数的解

3、析式是y=,则该二次函数的对称轴是直线()Ax=1Bx=Cx=1Dx=5实数a,b在数轴上的位置如图所示,以下说法正确的是( )Aa+b=0BbaCab0D|b|a|6如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )ABCD7下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()Ay=(x2)2+1 By=(x+2)2+1Cy=(x2)23 Dy=(x+2)238在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注据统计,4月份互联网信息中提及“海南”一词的次数约485000

4、00次,数据48500000科学记数法表示为()A485105 B48.5106 C4.85107 D0.4851089函数y=中自变量x的取值范围是( )Ax-1且x1Bx-1Cx1D-1x110在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A1颗B2颗C3颗D4颗二、填空题(本大题共6个小题,每小题3分,共18分)11已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B连接OC交反比例函数图象于点D,且

5、,连接OA,OE,如果AOC的面积是15,则ADC与BOE的面积和为_12如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90至图位置,继续绕右下角的顶点按顺时针方向旋转90至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_13如图,O中,弦AB、CD相交于点P,若A30,APD70,则B等于_14不等式5x33x+5的非负整数解是_15如图,若1+2=180,3=110,则4= 16关于x的一元二次方程x22x+m10有两个实数根,则m的取值范围是_三、解答题(共8题,共72分)17(8分)如图,直线y=kx+b(k0)与双曲线y

6、=(m0)交于点A(,2),B(n,1)求直线与双曲线的解析式点P在x轴上,如果SABP=3,求点P的坐标18(8分)先化简,再求值:,其中m是方程的根19(8分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标20(8分)(1)问题发现:如图,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;(2

7、)深入探究:如图,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使ABC=AMN,AM=MN,连接CN,试探究ABC与ACN的数量关系,并说明理由;(3)拓展延伸:如图,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长21(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆

8、应沿北偏东60方向行驶至B地,再沿北偏西37方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53,cos53,tan53)22(10分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表评估成绩n(分)评定等级频数90n100A280n90B70n80C15n70D6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率23(12

9、分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,)24某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万

10、千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.2、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x60)米,根据长方形的面积计算法则列出方程考点:一元二次方程的应用3、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得=(a+1)2-410=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程

11、根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根4、D【解析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴【详解】解:A在反比例函数图象上,可设A点坐标为(a,)A、B两点关于原点对称,B点坐标为(a,)又A、B两点在二次函数图象上,代入二次函数解析式可得:,解得:或,二次函数对称轴为直线x=故选D【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系5、D【解

12、析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|a|【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确. 选D.6、B【解

13、析】试题解析:转盘被等分成6个扇形区域,而黄色区域占其中的一个,指针指向黄色区域的概率=故选A考点:几何概率7、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为x=2,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为y=(x-a)2+h,顶点坐标为(a,h),对称轴为x=a8、C【解析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85117,故本题选择C.【点睛】把一个数M记成a11n(1|a|11,n为整数)的形式,这种记数的方法叫做科学记数法规律:(1)当|a|1

14、时,n的值为a的整数位数减1;(2)当|a|1时,n的值是第一个不是1的数字前1的个数,包括整数位上的19、A【解析】分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分详解:根据题意得到:,解得x-1且x1,故选A点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数易错易混点:学生易对二次根式的非负性和分母不等于0混淆10、B【解析】试题解析:由题意得,解得:故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、

15、1【解析】连结AD,过D点作DGCM,AOC的面积是15,CD:CO=1:3,OG:OM=2:3,ACD的面积是5,ODF的面积是15=,四边形AMGF的面积=,BOE的面积=AOM的面积=12,ADC与BOE的面积和为5+12=1,故答案为:1.12、【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可详解:AB=4,BC=3,AC=BD=5,转动一次A的路线长是: 转动第二次的路线长是: 转动第三次的路线长是: 转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为: 20174=5041,顶点A转动四次经过的路线长为: 故答案为点睛:考

16、查旋转的性质和弧长公式,熟记弧长公式是解题的关键.13、40【解析】由A30,APD70,利用三角形外角的性质,即可求得C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得B的度数【详解】解:A30,APD70,CAPDA40,B与C是对的圆周角,BC40故答案为40【点睛】此题考查了圆周角定理与三角形外角的性质此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用14、0,1,2,1【解析】5x11x+5,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的

17、基本性质正确解不等式,求出解集是解答本题的关键 15、110【解析】解:1+2=180,ab,3=4,又3=110,4=110故答案为11016、m1【解析】根据一元二次方程有实数根,得出0,建立关于m的不等式,求出m的取值范围即可【详解】解:由题意知,44(m1)0,m1,故答案为:m1【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式的关系:0,方程有两个不相等的实数根;0,方程有两个相等的实数根;0,方程没有实数根是本题的关键三、解答题(共8题,共72分)17、(1)y=2x+1;(2)点P的坐标为(,0)或(,0)【解析】(1)把A的坐标代入可求出m,即可求出反比例函数解析

18、式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SABP=3,即可得出,解之即可得出结论【详解】(1)双曲线y=(m0)经过点A(,2),m=1双曲线的表达式为y=点B(n,1)在双曲线y=上,点B的坐标为(1,1)直线y=kx+b经过点A(,2),B(1,1),解得直线的表达式为y=2x+1;(2)当y=2x+1=0时,x=,点C(,0)设点P的坐标为(x,0),SABP=3,A(,2),B(1,1),3|x|=3,即|x|=2,解

19、得:x1=,x2=点P的坐标为(,0)或(,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及SABP=3,得出18、原式=m是方程的根,即,原式=【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可试题解析:原式=.m是方程的根,即,原式=.考点:分式的化简求值;一元二次方程的解19、 (1)y12x2x4(2)点M的

20、坐标为(2,4)(3)83或43【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为m,12m2-m-4.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC42,CDC1D2,AD42232;设点Pn,12n2-n-4 ,过P作PQ垂直于x轴,垂足为Q. 证

21、PAQC1AD,得PQC1D=AQAD,即12n2-n-42=4-n32,解得解得n83,或n43,或n4(舍去).【详解】(1)抛物线的解析式为y12 (x4)(x2)12x2x4.(2)连接OM,设点M的坐标为m,12m2-m-4. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM12 4m12 4-12m2+m+4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC

22、12.OAOC,AOC90,CDC190,AC42,CDC1D2,AD42232,设点Pn,12n2-n-4 ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,PQC1D=AQAD,即12n2-n-42=4-n32 ,化简得3n2-6n-24 (82n),即3n26n2482n,或3n26n24(82n),解得n83,或n43,或n4(舍去),点P的横坐标为83或43.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.20、(1)NCAB;理由见解析;(2)ABC=ACN;理由见解析;(3);【解析】(1

23、)根据ABC,AMN为等边三角形,得到AB=AC,AM=AN且BAC=MAN=60从而得到BAC-CAM=MAN-CAM,即BAM=CAN,证明BAMCAN,即可得到BM=CN(2)根据ABC,AMN为等腰三角形,得到AB:BC=1:1且ABC=AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到BAC=MAN,根据相似三角形的性质即可得到结论;(3)如图3,连接AB,AN,根据正方形的性质得到ABC=BAC=45,MAN=45,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案【详解】(1)NCAB,理由如下:ABC与MN是等边三角形,AB=AC,AM=AN,

24、BAC=MAN=60,BAM=CAN,在ABM与ACN中, ,ABMACN(SAS),B=ACN=60,ANC+ACN+CAN=ANC+60+CAN=180,ANC+MAN+BAM=ANC+60+CAN=BAN+ANC=180,CNAB; (2)ABC=ACN,理由如下:=1且ABC=AMN,ABCAMN,AB=BC,BAC=(180ABC),AM=MNMAN=(180AMN),ABC=AMN,BAC=MAN,BAM=CAN,ABMACN,ABC=ACN;(3)如图3,连接AB,AN,四边形ADBC,AMEF为正方形,ABC=BAC=45,MAN=45,BACMAC=MANMAC即BAM=CA

25、N,ABMACN,=cos45=,BM=2,CM=BCBM=8,在RtAMC,AM=,EF=AM=2【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键21、(20-5)千米. 【解析】分析:作BDAC,设AD=x,在RtABD中求得BD=x,在RtBCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案详解:过点B作BD AC,依题可得:BAD=60,CBE=37,AC=13(千米),

26、BDAC,ABD=30,CBD=53,在RtABD中,设AD=x,tanABD= 即tan30=,BD=x,在RtDCB中,tanCBD= 即tan53=,CD= CD+AD=AC,x+=13,解得,x= BD=12-,在RtBDC中,cosCBD=tan60=,即:BC=(千米),故B、C两地的距离为(20-5)千米. 点睛:此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解22、(1)25;(2)848;(3)56【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案试题解析:(1)C等级频数为15,占60%,m=1560%=25;(2)B等级频数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论