版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D102的相反数是()A8B8CD3如图,在ABC中,AB=AC,AD和CE是高,ACE=45,点F是AC
2、的中点,AD与FE,CE分别交于点G、H,BCE=CAD,有下列结论:图中存在两个等腰直角三角形;AHECBE;BCAD=AE2;SABC=4SADF其中正确的个数有()A1B2C3D44两个有理数的和为零,则这两个数一定是()A都是零B至少有一个是零C一个是正数,一个是负数D互为相反数5如图,在ABC中,C=90,B=30,AD是ABC的角平分线,DEAB,垂足为点E,DE=1,则BC= ()AB2C3D+26广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.651067如图,是半圆的直径,点、是
3、半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()ABCD8如图,是的直径,弦,则阴影部分的面积为( )A2BCD9函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为()A0B0或2C0或2或2D2或210一副直角三角板如图放置,其中,点F在CB的延长线上若,则等于( )A35B25C30D1511如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为,则A、B两地之间的距离为()A800sin米B800tan米C米D米12二次函数y
4、=(x+2)21的图象的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,ACB90,点D是CB边上一点,过点D作DEAB于点E,点F是AD的中点,连结EF、FC、CE若AD2,CFE90,则CE_14已知一次函数的图象与直线y=x+3平行,并且经过点(2,4),则这个一次函数的解析式为_15如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有_白色纸片,第n个图案中有_张白色纸片16如图,已知等腰直角三角形 ABC 的直角边长为 1,以 RtABC 的斜边 AC 为直角 边
5、,画第二个等腰直角三角形 ACD,再以 RtACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角形所构成的图形的面积为_17抛物线y=x22x+3的对称轴是直线_18孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈10尺,1尺10寸),则竹竿的长为_三、解答题:(本大题共9个小题,共78
6、分,解答应写出文字说明、证明过程或演算步骤19(6分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图根据以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名20(6分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=a
7、x+b(a0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当PAC为等腰三角形时,直接写出t的值21(6分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统
8、计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率22(8分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F(1)求反比例函数的解析式;(2)求OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b的解集23(8分)已知,求代数式的值24(10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三
9、种可能性大小相同,现有两辆汽车经过这个十字路口(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率(2)求至少有一辆汽车向左转的概率25(10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在ABC内,CAE+CBE=1(1)如图,当四边形ABCD和EFCG均为正方形时,连接BFi)求证:CAECBF;ii)若BE=1,AE=2,求CE的长;(2)如图,当四边形ABCD和EFCG均为矩形,且时,若BE1,AE=2,CE=3,求k的值;(3)如图,当四边形ABCD和EFCG均为菱形,且DAB=GEF=45时,设BE=m,AE=n,CE
10、=p,试探究m,n,p三者之间满足的等量关系(直接写出结果,不必写出解答过程)26(12分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的问该兴趣小组男生、女生各有多少人?27(12分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说
11、明理由.(参考数据:,)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图2、C【解析】互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,故选C3、C【解析】图中有3个等腰直角三角形,故结论错误;根据AS
12、A证明即可,结论正确;利用面积法证明即可,结论正确;利用三角形的中线的性质即可证明,结论正确.【详解】CEAB,ACE=45,ACE是等腰直角三角形,AF=CF,EF=AF=CF,AEF,EFC都是等腰直角三角形,图中共有3个等腰直角三角形,故错误,AHE+EAH=90,DHC+BCE=90,AHE=DHC,EAH=BCE,AE=EC,AEH=CEB=90,AHECBE,故正确,SABC=BCAD=ABCE,AB=AC=AE,AE=CE,BCAD=CE2,故正确,AB=AC,ADBC,BD=DC,SABC=2SADC,AF=FC,SADC=2SADF,SABC=4SADF故选C【点睛】本题考查
13、相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题4、D【解析】解:互为相反数的两个有理数的和为零,故选DA、C不全面B、不正确5、C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据RtADE可得AD=2DE=2,根据题意可得ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1考点:角平分线的性质和中垂线的性质6、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动
14、的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、D【解析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OCBD且BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案【详解】解:如图,连接OC、OD、BD,点C、D是半圆O的三等分点,AOC=COD=DOB=60,OC=OD,COD是等边
15、三角形,OC=OD=CD,OB=OD,BOD是等边三角形,则ODB=60,ODB=COD=60,OCBD,S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积8、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可详解:连接OD,CDAB, (垂径定理),故 即可得阴影部分的面积等于扇形OBD的面积,又 (圆周角定理),OC=2,故S扇形OBD= 即阴影部分的面积为.故选D.
16、点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.9、C【解析】根据函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决【详解】解:函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,当m0时,y2x+1,此时y0时,x0.5,该函数与x轴有一个交点,当m0时,函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,则(m+2)24m(m+1)0,解得,m12,m22,由上可得,m的值为0或2或2,故选:C【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答10、
17、D【解析】直接利用三角板的特点,结合平行线的性质得出BDE=45,进而得出答案【详解】解:由题意可得:EDF=30,ABC=45,DECB,BDE=ABC=45,BDF=45-30=15故选D【点睛】此题主要考查了平行线的性质,根据平行线的性质得出BDE的度数是解题关键11、D【解析】【分析】在RtABC中,CAB=90,B=,AC=800米,根据tan=,即可解决问题.【详解】在RtABC中,CAB=90,B=,AC=800米,tan=,AB=,故选D【点睛】本题考查解直角三角形的应用仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.12、D【解析】根据二次函数顶点式的性质解答即
18、可.【详解】y=(x+2)21是顶点式,对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点, .故答案为: .【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.14、y=x1【解析】分析:根据互相平行的两直线解析式的k值相等设出一次函数的解析式,再把点(2,4)的坐标代入解析式求解即可详解:一次函数的图象与直线y=x+1平行,
19、设一次函数的解析式为y=x+b 一次函数经过点(2,4),(2)+b=4,解得:b=1,所以这个一次函数的表达式是:y=x1 故答案为y=x1点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出一次函数解析式是解题的关键15、13 3n+1 【解析】分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可详解:第1个图案中有白色纸片31+1=4张第2个图案中有白色纸片32+1=7张,第3图案中有白色纸片33+1=10张,第4个图案中有白色纸片34+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究
20、能力,解题时必须仔细观察规律,通过归纳得出结论.16、12.2【解析】ABC是边长为1的等腰直角三角形,SABC=11=11-1;AC=,AD=1,SACD=1=11-1第n个等腰直角三角形的面积是1n-1SAEF=14-1=4,SAFG=12-1=8,由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2故答案为12.217、x=1【解析】把解析式化为顶点式可求得答案【详解】解:y=x2-2x+3=(x-1)2+2,对称轴是直线x=1,故答案为x=1【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h
21、,k)18、四丈五尺【解析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺)故答案为:四丈五尺【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)120,30%;(2)作图见解析;(3)1【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的
22、学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 1215%=120人;36120=30%;(2)12045%=54人,补全统计图如下:(3)1800=1人.考点:条形统计图;扇形统计图;用样本估计总体.20、(1)a=;(2)1n2;(3)满足条件的时间t为1s,2s,或(3+)或(3)s【解析】试题分析:(1)、根据题意求出
23、点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值试题解析:(1)、解:点C是直线l1:y=x+1与轴的交点, C(0,1),点C在直线l2上, b=1, 直线l2的解析式为y=ax+1, 点B在直线l2上,2a+1=0, a=;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0, x=1,由图象知,点Q在点A,B之间, 1n2(3)、解:如图,PAC是等腰三角形, 点x轴正半轴上时,当AC=P
24、1C时,COx轴, OP1=OA=1, BP1=OBOP1=21=1, 11=1s,当P2A=P2C时,易知点P2与O重合, BP2=OB=2, 21=2s,点P在x轴负半轴时,AP3=AC, A(1,0),C(0,1), AC=, AP3=,BP3=OB+OA+AP3=3+或BP3=OB+OAAP3=3,(3+)1=(3+)s,或(3)1=(3 )s,即:满足条件的时间t为1s,2s,或(3+)或(3)s点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的
25、性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案21、(1)50;(2)108;(3)【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案本题解析:解:(1)调查的总人数是:1938%50(人)C组的人数有501519412(人),补全条形图如图所示(2)画树状图如下共有12种等可能的结果,恰好选中甲的结果有6种,P(恰好选中甲)点睛:本题考查了列表法与树状图、条形统计图的综合运用熟练
26、掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键22、(1)y=;(2);(3)x1【解析】(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据OEF的面积=S矩形BCDOSODESOBFSCEF进行计算;(3)观察函数图象得到当x1时,一次函数图象都在反比例函数图象上方,即k2x+b【详解】(1)四边形DOBC是矩形,且点C的坐标为(1,4),OB=1,OD=4,点A为线段OC的中点,A点坐标为(3
27、,2),k1=32=1,反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),OEF的面积=S矩形BCDOSODESOBFSCEF=41411(1)(41)=;(3)由图象得:不等式不等式k2x+b的解集为x1【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可23、12【解析】解:,将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值24、 (1);(2)【解析】(1)可以采用列表法或树状图求解可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 20717-2024道路车辆牵引车和挂车之间的电连接器(15芯)24 V15芯型
- 二零二五版信息技术专业大学生实习项目合同协议3篇
- 二零二五年顶名购置住宅合作协议3篇
- 二零二五年社区停车场车位买卖及租赁合同
- 2024物业管理公司安全文化建设与实施合同3篇
- 二零二五年度公司并购项目股权交割与整合合同3篇
- 2024年简化版汽车租赁协议样式版
- 专业劳务合作协议2024年通行版版B版
- 二零二五版电视互动节目主持人聘任协议3篇
- 2024港口物流作业合同
- 新概念英语第二册考评试卷含答案(第49-56课)
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 【奥运会奖牌榜预测建模实证探析12000字(论文)】
- 鲁滨逊漂流记人物形象分析
- 新版心理倾听师资格考试备考题库(精简250题)
- 救生艇筏、救助艇基本知识课件
- 暂态地电压局部放电检测技术课件
- 220kV变压器监造细则
- 8 泵站设备安装工程单元工程质量验收评定表及填表说明
- 企业年会盛典元旦颁奖晚会通用PPT模板
- 污水管道工程监理控制要点
评论
0/150
提交评论