2022年江西师大附中达标名校毕业升学考试模拟卷数学卷含解析_第1页
2022年江西师大附中达标名校毕业升学考试模拟卷数学卷含解析_第2页
2022年江西师大附中达标名校毕业升学考试模拟卷数学卷含解析_第3页
2022年江西师大附中达标名校毕业升学考试模拟卷数学卷含解析_第4页
2022年江西师大附中达标名校毕业升学考试模拟卷数学卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知ABC,按以下步骤作图:分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;作直线 MN 交 AB 于点 D,连接 CD若 CD=AC,A=50,则ACB 的度数为( )A90B95C105D1102已知x+=3,则x2+=()A7B9C11D83若

2、正比例函数ymx(m是常数,m0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A2B2C4D44已知等边三角形的内切圆半径,外接圆半径和高的比是()A1:2:B2:3:4C1:2D1:2:35如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把ABE沿AE折叠,当点B的对应点B落在ADC的角平分线上时,则点B到BC的距离为( )A1或2B2或3C3或4D4或56计算(18)9的值是( )A-9B-27C-2D27某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A50和48B50和47C48和48D48和4

3、38不等式的解集在数轴上表示正确的是( )ABCD9如图是由四个小正方体叠成的一个几何体,它的左视图是( )ABCD10对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解二、填空题(共7小题,每小题3分,满分21分)11分式方程=1的解为_12若关于x、y的二元一次方程组的解满足xy0,则m的取值范围是_13关于x的一元二次方程x22kx+k2k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12x1x2+x22的值是_14如图,在ABC中,ABAC10cm,F为AB上一点,AF2,点E从点A出发,沿AC

4、方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0t5),连D交CF于点G若CG2FG,则t的值为_15如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 16有一个正六面体,六个面上分别写有16这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是_17可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是_三、解答题(共7小题,满分69分)18(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过(1

5、)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率19(5分)甲班有45人,乙班有39人现在需要从甲、乙班各抽调一些同学去参加歌咏比赛如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍请问从甲、乙两班各抽调了多少参加歌咏比赛?20(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值

6、;求菜园的最大面积21(10分)如图,菱形ABCD的边长为20cm,ABC120,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQBD,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由22(10分) “六一”期间,小张

7、购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?23(12分)已知抛物线yax2+(3b+1)x+b3(a0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”(1)当a2,b1时,求该抛物线的“和谐点”;(2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”

8、A、B求实数a的取值范围;若点A,B关于直线yx(+1)对称,求实数b的最小值24(14分)如图,在中,平分,交于点,点在上,经过两点,交于点,交于点.求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据等腰三角形的性质得到CDA=A=50,根据三角形内角和定理可得DCA=80,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到B=BCD,根据三角形外角性质可知B+BCD=CDA,进而求得BCD=25,根据图形可知ACB=ACD+BC

9、D,即可解决问题.【详解】CD=AC,A=50CDA=A=50CDA+A+DCA=180DCA=80根据作图步骤可知,MN垂直平分线段BCBD=CDB=BCDB+BCD=CDA2BCD=50BCD=25ACB=ACD+BCD=80+25=105故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.2、A【解析】根据完全平方公式即可求出答案【详解】(x+)2=x2+2+9=2+x2+,x2+=7,故选A【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.3、B【解析】利用待定系数法求出m,再结合函数的性质即可

10、解决问题【详解】解:ymx(m是常数,m0)的图象经过点A(m,4),m24,m2,y的值随x值的增大而减小,m0,m2,故选:B【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角OCD中,DOC=60,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1故选D考点:正多边形和圆5、A【解析】连接BD,过点B作BMAD于M设DM=BM=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性

11、质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B到BC的距离【详解】解:如图,连接BD,过点B作BMAD于M,点B的对应点B落在ADC的角平分线上,设DM=BM=x,则AM=7x,又由折叠的性质知AB=AB=5,在直角AMB中,由勾股定理得到:,即,解得x=3或x=4,则点B到BC的距离为2或1故选A【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键6、C【解析】直接利用有理数的除法运算法则计算得出答案【详解】解:(-18)9=-1故选:C【点睛】此题主要考查了有理数的除法运算,正

12、确掌握运算法则是解题关键7、A【解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.8、B【解析】根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可【详解】解:解:移项得,x3-2,合并得,x1;在数轴上表示应包括1和它左边的部分,如下:;故选:B【点睛】本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示9、A【

13、解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是故选A考点:简单组合体的三视图10、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解二、填空题(共7小题,每小题3分,满分21分)11、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验详解:方程两边都乘以2(x21)得,8

14、x+21x1=2x22,解得x1=1,x2=0.1,检验:当x=0.1时,x1=0.11=0.10,当x=1时,x1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根12、m-1【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y0即可得到关于m的不等式,求得m的范围【详解】解:,+得1x+1y1m+4,则x+ym+1,根据题意得m+10,解得m1故答案是:m1【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的

15、关键是把m当作已知数表示出x+y的值,再得到关于m的不等式13、1【解析】【分析】根据根与系数的关系结合x1+x2=x1x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值【详解】x22kx+k2k=0的两个实数根分别是x1、x2,x1+x2=2k,x1x2=k2k,x12+x22=1,(x1+x2)2-2x1x2=1,(2k)22(k2k)=1,2k2+2k1=0,k2+k2=0,k=2或1,=(2k)211(k2k)0,k0,k=1,x1x2=k2k=0,x12x1x2+x22=10=

16、1,故答案为:1【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式0”是解题的关键14、1【解析】过点C作CHAB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值【详解】如下图,过点C作CHAB交DE的延长线于点H,则,DFCH,同理,解得t1,t(舍去),故答案为:1【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.15、.【解析】试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,BODCOD60,所以,三角形OCD为等边三角形,所以,半圆O的半径为OCCD2,S扇形OBD

17、C,SOBC,S弓形CDS扇形ODCSODC,所以阴影部分的面积为为S().考点:扇形的面积计算.16、23 【解析】投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,其概率是=【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=17、9.2101【解析】根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2101.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2101.故答案为: 9.2101.【点睛】本题

18、主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.三、解答题(共7小题,满分69分)18、(1);(2)【解析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为,故答案为:;(2)共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,至少有两辆汽车选择B通道通过的概率为【点睛】考查了概

19、率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键19、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x1)人,根据题意列出一元一次方程,从而得出答案详解:设从甲班抽调了x人,那么从乙班抽调了(x1)人, 由题意得,45x=239(x1), 解得:x=35, 则x1=351=1 答:从甲班抽调了35人,从乙班抽调了1人 点睛:本题主要考查的是一元一次方程的应用,属于基础题型理解题目的含义,找出等量关系是解题的关键20、(1)见详解;(2)x=18;(3) 416 m2.【解析】(1)根据“垂直于墙的长度=可得

20、函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得【详解】(1)根据题意知,yx;(2)根据题意,得(x)x384,解得x18或x32.墙的长度为24 m,x18.(3)设菜园的面积是S,则S(x)xx2x (x25)2.0,当x25时,S随x的增大而增大.x24,当x24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题21、 (1) S=2(0t1); (2) ;(3)见解

21、析.【解析】(1)如图1,根据S=SABC-SAPQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值【详解】解:(1)如图1,四边形ABCD是菱形,ABD=DBC=ABC=60,ACBD,OAB=30,AB=20,OB=10,AO=10,由题意得:AP=4t,PQ=2t,AQ=2t,S=SABCSAPQ,=,= ,=2t2+100(

22、0t1);(2)如图2,在RtAPM中,AP=4t,点Q关于O的对称点为M,OM=OQ,设PM=x,则AM=2x,AP=x=4t,x=,AM=2PM=,AM=AO+OM,=10+102t,t=;答:当t为秒时,点P、M、N在一直线上;(3)存在,如图3,直线PN平分四边形APMN的面积,SAPN=SPMN,过M作MGPN于G, ,MG=AP,易得APHMGH,AH=HM=t,AM=AO+OM,同理可知:OM=OQ=102t,t=10=102t,t=答:当t为秒时,使得直线PN平分四边形APMN的面积【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,

23、计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.22、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大【解析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价单价数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题【详解】(1)设A种文具进货x只,B种文具进货只,由题意得:,解得:x40,答:A种文具进货40只,B种文具进货60只;(2)设购进A型文具a只,则有,且;解得:,a为整数,a48、49、50,一共有三种购货方案;利润,w随a增大而减小,当a48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大【点睛】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.23、(1)()或(1,1);(1)2a17b的最小值是【解析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点”A、B则关于m的方程m=am1+(3b+1)m+b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论