版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三节 空间点、直线、平面之间的位置关系三年8考 高考指数:1理解空间直线、平面位置关系的定义;2了解可以作为推理依据的公理和定理;3能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题1.点、线、面的位置关系是本节的重点,也是高考的热点2.从考查形式看,以考查点、线、面的位置关系为主,同时考查逻辑推理能力和空间想象能力.3.从考查题型看,多以选择题、填空题的形式考查,有时也出现在解答题中,一般难度不大,属低中档题.1.平面的基本性质【即时应用】(1)思考:三个公理的作用分别是什么?你能说出公理2的几个推论吗?提示:公理1的作用:()判断直线在平面内;()由直线在平面内判断直线上
2、的点在平面内公理2的作用:确定平面的依据,它提供了把空间问题转化为平面问题的条件公理3的作用:()判定两平面相交;()作两平面的交线;()证明点共线公理2的三个推论为:()经过一条直线和这条直线外的一点,有且只有一个平面;()经过两条相交直线,有且只有一个平面;()经过两条平行直线,有且只有一个平面(2)判断下列说法的正误(请在括号中填写“”或“”)如果两个不重合的平面,有一条公共直线a,就说平面,相交,并记作=a ( )两个平面,有一个公共点A,就说,相交于过A点的任意一条直线 ( )两个平面,有一个公共点A,就说,相交于A点,并记作=A ( )两个平面ABC与DBC相交于线段BC ( )【
3、解析】根据平面的性质公理3可知对;对于,其错误在于“任意”二字上;对于,错误在于=A上;对于,应为平面ABC和平面DBC相交于直线BC.答案: (3)平面,相交,在,内各取两点,这四点都不在交线上,这四点能确定_个平面【解析】如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个答案:1或42.空间中两直线的位置关系(1)空间两直线的位置关系(2)平行公理和等角定理平行公理:平行于_的两条直线平行用符号表示:设a,b,c为三条直线,若ab,bc,则ac等角定理:空间中如果两个角的两边分别对应平行,那么这两个角_同一条直线相等或互补(3)异面直线所成
4、的角定义:已知两条异面直线a,b,经过空间中任一点O作直线aa,bb,把a与b所成的_叫做异面直线所成的角(或夹角)范围:_.锐角(或直角)【即时应用】(1)思考:不相交的两条直线是异面直线吗?不在同一平面内的直线是异面直线吗?提示:不一定因为两条直线没有公共点,这两直线可能平行也可能异面;因为不同在任何一个平面内的直线为异面直线,故该结论不一定正确(2)和两条异面直线都相交的两条直线的位置关系是_.【解析】画出图形分析.图中,AB、CD与异面直线a、b都相交,此时AB、CD异面;图中,AB、AC与异面直线a、b都相交,此时AB、AC相交.答案:异面或相交3.空间直线与平面、平面与平面的位置关
5、系图形语言 符号语言 公共点直线与平 面 相交 a=A 个平行 a 个在平 面内 a 个 aA10无数aa平面与平面平行 个相交 =l 个无数0l【即时应用】(1)判断下列说法是否正确(请在括号中填写“”或“”)经过三点确定一个平面 ( )梯形可以确定一个平面 ( )两两相交的三条直线最多可以确定三个平面 ( )如果两个平面有三个公共点,则这两个平面重合 ( )(2)两个不重合的平面可把空间分成_部分【解析】(1)经过不共线的三点可以确定一个平面,不正确;两条平行线可以确定一个平面,正确;两两相交的三条直线可以确定一个或三个平面,正确;命题中没有说清三个点是否共线,不正确.(2)当两平面平行时
6、可分为3部分;当两平面相交时分为4部分答案:(1) (2)3或4 平面的基本性质及其应用【方法点睛】考查平面基本性质的常见题型及解法(1)判断所给元素(点或直线)是否能确定唯一平面,关键是分析所给元素是否具有确定唯一平面的条件,此时需要利用公理2及其推论(2)证明点或线共面问题,一般有两种途径:首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;将所有条件分为两部分,然后分别确定平面,再证两平面重合(3)证明点共线问题,一般有两种途径:先由两点确定一条直线,再证其他各点都在这条直线上;直接证明这些点都在同一条特定直线上(4)证明线共点问题,常用的方法是:先证其中
7、两条直线交于一点,再证其他直线经过该点【例1】(1)给出以下四个命题不共面的四点中,其中任意三点不共线;若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;若直线a、b共面,直线a、c共面,则直线b、c共面;依次首尾相接的四条线段必共面.正确命题的个数是( )(A)0 (B)1 (C)2 (D)3(2)如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BAD=FAB=90,BCAD且BC= AD,BEAF且BE= AF,G,H分别为FA,FD的中点.证明:四边形BCHG是平行四边形;C,D,F,E四点是否共面?为什么?【解题指南】(1)根据确定平面的公
8、理及推论进行判断.(2)证明BC、GH平行且相等即可;证明EFCH,由此构成平面,再证点D在该平面上【规范解答】(1)选B.假设其中有三点共线,则该直线和直线外的另一点确定一个平面.这与四点不共面矛盾,故其中任意三点不共线,所以正确.从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;不正确;不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.(2)由题设知,FG=GA,FH=HD,所以GHAD且GH= AD,又BCAD且BC= AD,故GHBC且GH=BC,所以四边形BCHG是平行四边形C,D,F,E四点共面理由如下:由BEAF且BE= AF,G是F
9、A的中点知,BEGF且BE=GF,所以四边形EFGB是平行四边形,所以EFBG.由知BGCH,所以EFCH,故EC,FH共面.又点D在直线FH上,所以C,D,F,E四点共面.【互动探究】本例第(2)题的条件不变,如何证明“FE,AB,DC交于一点”?【证明】由例题可知,四边形EBGF和四边形BCHG都是平行四边形,故可得四边形ECHF为平行四边形ECHF,且EC= DF四边形ECDF为梯形FE,DC交于一点,设FEDC=MMFE,FE平面BAFE,M平面BAFE同理M平面BADC又平面BAFE平面BADC=BA,MBAFE,AB,DC交于一点【反思感悟】点共线和线共点问题,都可转化为点在直线上
10、的问题来处理,实质上是利用公理3,证明点在两平面的交线上,解题时要注意这种转化思想的运用【变式备选】如图,空间四边形ABCD中,E,F,G,H分别是AB,AD,BC,CD上的点,设EG与FH交于点P求证:P、A、C三点共线【证明】EGFH=P,PEG,EG平面ABC,P平面ABC同理P平面ADC.P为平面ABC与平面ADC的公共点又平面ABC平面ADC=AC.PAC.P、A、C三点共线 空间中两直线的位置关系【方法点睛】判定空间直线位置关系的方法空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及
11、线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决【提醒】在空间中两直线的三种位置关系中,验证异面直线及其所成角是考查的热点.【例2】如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,错误的为( )(A)ACBD(B)AC截面PQMN(C)AC=BD(D)异面直线PM与BD所成的角为45【解题指南】结合图形,根据有关的知识逐一进行判断注意本题选择的是错误选项!【规范解答】选C.因为四边形PQMN为正方形,所以PQMN,又PQ平面ADC,MN平面ADC,所以PQ平面ADC.又平面BAC平面DAC=AC,所以PQAC.同理可证QMBD.由PQAC,QMBD,PQ
12、QM可得ACBD,故A正确;由PQAC可得AC截面PQMN,故B正确;异面直线PM与BD所成的角等于PM与PN所成的角,故D正确;综上知C错误.【反思感悟】解决此类问题常出现的错误是不善于挖掘题中的条件,不能将问题适当地转化;另外,图形复杂、空间想象力不够、分析问题不到位等,也是常出现错误的原因【变式训练】设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )(A)若AC与BD共面,则AD与BC共面(B)若AC与BD是异面直线,则AD与BC是异面直线(C)若AB=AC,DB=DC,则ADBC(D)若AB=AC,DB=DC,则AD=BC【解析】选D.对于A,易知点A,B,C,D共面,
13、故AD与BC共面,所以A正确;对于B,假设AD与BC不异面,则可得AC与BD共面,与题意矛盾,故B正确;对于C,如图,E为BC中点,易证得直线BC平面ADE,从而ADBC,故C正确;对于D,当四点构成空间四面体时,只能推出ADBC,但二者不一定相等,故D错误. 异面直线所成的角【方法点睛】1.找异面直线所成的角的方法一般有三种找法:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移2.求异面直线所成角的步骤(1)作:通过作平行线,得到相交直线;(2)证:证明相交直线所成的角或其补角为异面直线所成的角;(3)算:通过解三角形,求出该角 【例3】(2012银川模拟)如图
14、所示,在正方体ABCD-A1B1C1D1中,(1)求A1C1与B1C所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.【解题指南】利用正方体中的平行关系,将两异面直线所成的角转化成三角形的内角进行求解【规范解答】(1)如图,连接AC、AB1,由ABCD-A1B1C1D1是正方体,知AA1C1C为平行四边形,所以ACA1C1,从而B1C与AC所成的角就是A1C1与B1C所成的角.由AB1=AC=B1C可知B1CA=60,即A1C1与B1C所成角为60.BAECDFD1B1C1A1(2)如图,连接BD,由AA1CC1,且AA1=CC1可知A1ACC1是平行四边形,A
15、CA1C1.AC与EF所成的角就是A1C1与EF所成的角.EF是ABD的中位线,EFBD.又ACBD,EFAC,即所求角为90.【反思感悟】1.求异面直线所成的角时,常采用平行平移的方法,转化为三角形的内角来求解.解题时常常借助三角形的中位线来完成转化.2.在求异面直线所成的角时常犯的错误是忽视角的范围,如在解三角形的过程中求得三角形内角的余弦值为负时,必须转化为(0, 内的角【变式训练】如图,在正方体ABCDA1B1C1D1中,求:(1)异面直线AB与A1D1所成的角;(2)AD1与DC1所成的角.【解析】(1)A1B1AB,而A1D1A1B1,A1D1AB,AB与A1D1所成的角为90.(
16、2)连接AB1,B1D1,AB1DC1,AB1与AD1所成的角即为DC1与AD1所成的角.又AD1=AB1=B1D1,AB1D1为正三角形.AD1与AB1所成的角为60.AD1与DC1所成的角为60.【变式备选】在空间四边形ABCD中,已知AD=1, 且ADBC,对角线 求AC和BD所成的角【解析】如图,分别取AD、CD、AB、BD的中点E、F、G、H,连接EF、FH、HG、GE、GF.由三角形的中位线定理知EFAC,且 GEBD,且 GE和EF所成的锐角(或直角)就是AC和BD所成的角.同理, GHAD,HFBC,又ADBC,GHF=90,GF2=GH2+HF2=1,在EFG中,EG2+EF
17、2=1=GF2,GEF=90,即AC和BD所成的角为90.【满分指导】求异面直线所成角主观题的规范解答【典例】(12分)(2011上海高考改编)已知ABCDA1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求(1)异面直线BD与AB1所成角的余弦值;(2)四面体AB1D1C的体积.【解题指南】(1)利用平行平移法得到异面直线所成的角,转化为解三角形的问题;(2)利用割补法求体积即可【规范解答】(1)连BD,AB1,B1D1,AD1.1分BDB1D1,异面直线BD与AB1所成角为AB1D1(或其补角),记AB1D1=, 3分由已知条件得在AB1D1中,由余弦定理得 6分异面直线BD与AB1
18、所成角的余弦值为 7分(2)连接AC,CB1,CD1,则所求四面体的体积12分【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以得到以下失分警示和备考建议:失分警示 在解答本题时有两点容易造成失分:(1)在用平行平移将异面直线所成的角转化为三角形的内角时,忽视对三角形的内角“即为两异面直线所成的角(或其补角)”的叙述;(2)在求几何体的体积时,不知将其转化为四棱柱的体积与四个三棱锥体积的差备考建议 解决异面直线所成角的问题时,还有以下几点容易造成失分,在备考时要高度关注:(1)辅助线的作法不灵活,不能利用已知条件中的平行或中点;(2)对立体几何计算题的解答规范不熟悉,书写不条理;(3)通过解三角形得到某一内角的余弦值为负值后,忽视角的范围,不知将其转化为正值来处理建议在备考中要强化对立体几何中解答题的训练,这是高考中的考查重点之一.同时要注重解答题的规范表达和准确计算.1.(2011浙江高考)若直线l不平行于平面,且l,则( )(A)内的所有直线与l异面(B)内不存在与l平行的直线(C)内存在唯一的直线与l平行(D)内的直线与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行贷款委托代理合同(2篇)
- 巴西课件 湘教版
- 人教版南辕北辙课件
- 苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题
- 老舍《茶馆》课件
- 外科护理课件
- 基层教育 课件
- 西京学院《中华才艺》2023-2024学年第一学期期末试卷
- 西京学院《外国文学》2021-2022学年第一学期期末试卷
- 西华师范大学《中外电影史》2021-2022学年期末试卷
- GB 40165-2021固定式电子设备用锂离子电池和电池组安全技术规范
- 音标3元音字母e发音用上课
- 深圳市失业人员停止领取失业保险待遇申请表空表
- DJI 产品交付理论试题
- 第十三章医疗服务管理课件
- 工程质保期满验收报告模板
- 《中国当代文艺思潮》导论文艺思潮的基本概念
- 高考地理复习:过程类推理综合题解析-以地貌景观题为例
- 2023年南方出版传媒股份有限公司招聘笔试模拟试题及答案解析
- 初中语文阅读专题教学课件
- 教育调查研究课件
评论
0/150
提交评论