Coherent Classical Communication and Entanglement recycling in 经典通信和量子纠缠相干循环_第1页
Coherent Classical Communication and Entanglement recycling in 经典通信和量子纠缠相干循环_第2页
Coherent Classical Communication and Entanglement recycling in 经典通信和量子纠缠相干循环_第3页
Coherent Classical Communication and Entanglement recycling in 经典通信和量子纠缠相干循环_第4页
Coherent Classical Communication and Entanglement recycling in 经典通信和量子纠缠相干循环_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Coherent Classical CommunicationAram Harrow, MITQuantum Computing Graduate Research FellowObjectiveObjective ApproachStatus Determine tradeoff curves for quantum channel coding and entanglement distillaton assisted by entanglement or classical or quantum communication.Find efficient methods to calcu

2、late and achieve these capacities.Relate different quantum protocols.Reconsider the role of classical communication in quantum information theory.Found classical and quantum capacities of unitary gates and quantum channels assisted by arbitrary amounts of entanglement.Proved super-dense coding of qu

3、antum states.Derived several new quantum protocols and related several old ones.HXZcoherentclassicalcomm.Research OverviewA. Harrow, MITA.W. Harrow and H.-K. Lo. “A tight lower bound on the classical communication cost of entanglement dilution. quant-ph/0204096, accepted IEEE-IT.C.H. Bennett, A.W. H

4、arrow, D.W. Leung and J.A. Smolin. “On the capacities of bipartite Hamiltonians and unitary gates. quant-ph/0205057, accepted IEEE-IT.A.W. Harrow and M.A. Nielsen. “Robustness of gates in the presence of noise, quant-ph/0301108, accepted PRA.A.W. Harrow. “Coherent Classical Communication. quant-ph/0

5、307091I. Devetak, A.W. Harrow and A. Winter. “A family of quantum protocols. quant-ph/0308044A.W. Harrow, P. Hayden and D.W. Leung. “Superdense coding of quantum states. quant-ph/0308221D. Bacon, A.W. Harrow and I.L. Chuang. “Efficient circuits for Clebsch-Gordon transformations. in preparationC.H.

6、Bennett, A.W. Harrow and S. Lloyd. “Universal compression via gentle tomography. in preparationInequivalent resources?One bit of quantum communication (1 qubit) can be used to send one classical bit (1 cbit) or generate one EPR pair (1 ebit).Conversely, teleportation uses two cbits and 1 ebit to sen

7、d 1 qubit.Although the above protocols are optimal, combining them uses three qubits to send one qubit.Similar inefficiencies exist throughout quantum information theory. Are they necessary?beyond qubits and cbitsLet |xix=0,1 be a basis for C2.qubit:|xiA!|xiB cbit:|xiA!|xiB|xiEcoherent cbit:|xiA!|xi

8、A|xiBebit: |Fi=2-1/2x|xiA|xiB 1 qubit 1 coherent cbit 1 cbit1 qubit 1 coherent cbit 1 ebitsources of CCCSuper-dense coding:1 qubit + 1 ebit 2 coherent cbitsDistributed unitary gates: If U is a unitary gate and U C cbits, then U C coherent cbits.Example: CNOT 1 cbit ()CNOT 1 cbit ()CNOT + ebit 1 cbit

9、 () + 1 cbit ()uses of CCCEntanglement recycling using CCC:Suppose X + C cbits Y and the classical message sent is independent of the output state. ThenX + C coherent cbits Y + C ebitsExample: teleportation with coherent communicationHXZ2 coherent cbits + 1 ebit 1 qubit + 2 ebitscoherentclassicalcom

10、m.Simple consequences2 coherent cbits = 1 qubit + 1 ebit(using entanglement catalytically)Teleportation and super-dense coding are no longer irreversible.Theres more!Super-dense coding of quantum states:1 qubit + 1 ebit 2 remote qubits (asymptotically)Single-letter expression for capacity of a unita

11、ry interaction to communicate classical or quantum data assisted by any amount of entanglement.Two minute proofs of the hashing inequality and the quantum channel capacity.Generalizations of these protocols to obtain the full trade-off curves for quantum channels assisted by a limited amount of entanglement and entanglement distillation with a limited amount of communication.ReferencesC.H. Bennett, A.W. Harrow, D.W. Leung and J.A. Smolin. “On the capacities of bipartite Hamiltonians and unitary gates. qu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论