高考专题训练(十一)三角变换与解三角形、平面向量_第1页
高考专题训练(十一)三角变换与解三角形、平面向量_第2页
高考专题训练(十一)三角变换与解三角形、平面向量_第3页
高考专题训练(十一)三角变换与解三角形、平面向量_第4页
高考专题训练(十一)三角变换与解三角形、平面向量_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考专题训练(十一)三角变换与解三角形、平面向量时间:45分钟分值:75分一、选择题:本大题共6小题,每题5分,共30分在每题给出的四个选项中,选出符合题目要求的一项填在括号里1(陕西)在ABC中,角A,B,C所对边的长分别为a,b,c,假设a2b22c2,那么cosC的最小值为()A.eq f(r(3),2)B.eq f(r(2),2)C.eq f(1,2) Deq f(1,2)解析由条件及余弦定理得cosCeq f(a2b2c2,2ab)eq f(f(a2b2,2),2ab)eq f(ab,2ab)eq f(1,2),取等号的条件是abc,即ABC是等边三角形答案C2假设a,b,c均为向量

2、,且ab0,(ac)(bc)0,那么|abc|的最大值为()A.eq r(2)1 B1C.eq r(2) D2解析ab0,(ac)(bc)0,即ab(acbc)c20acbc1.又|abc|eq r(abc2)eq r(a2b2c22ab2ac2bc)eq r(32acbc)1.答案B3(上海)在ABC中,假设sin2Asin2Bsin2C,那么ABC的形状是()A锐角三角形 B直角三角形C钝角三角形 D不能确定解析由正弦定理可将sin2Asin2Bsin2C转化为a2b2c2,又由余弦定理可得cosCeq f(a2b2c2,2ab)0,那么C为钝角,ABC是钝角三角形答案C4在平面直角坐标系

3、中,O为坐标原点,设向量eq o(OA,sup15()a,eq o(OB,sup15()b,其中a(3,1),b(1,3)假设eq o(OC,sup15()ab,且01,C点所有可能的位置区域用阴影表示正确的选项是()eq o(sup7(),sdo5(A)eq o(sup7(),sdo5(B)eq o(sup7(),sdo5(C)eq o(sup7(),sdo5(D)解析由题意知eq o(OC,sup15()(3,3),取特殊值,0,0,知所求区域包含原点,取0,1,知所求区域包含(1,3),从而选A.答案A5如图,在ABC中,D是边AC上的点,且ABAD,2ABeq r(3)BD,BC2BD

4、,那么sinC的值为()A.eq f(r(3),3) B.eq f(r(3),6)C.eq f(r(6),3) D.eq f(r(6),6)解析如题图所示在BCD中,BC2BD,eq f(sinC,sinBDC)eq f(1,2).在ABD中,ABAD,2ABeq r(3)BD,cosADBeq f(AD2BD2AB2,2ADBD)eq f(r(3),3),sinADBeq f(r(6),3),ADBBDC,sinADBsinBDC,sinCeq f(1,2)eq f(r(6),3)eq f(r(6),6).答案D6(江西)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,那么

5、eq f(|PA|2|PB|2,|PC|2)()A2 B4C5 D10解析令|AC|BC|2,那么|AB|2eq r(2);那么|CD|eq f(1,2)|AB|eq r(2),|PD|eq f(1,2)|CD|eq f(r(2),2),|PA|PB|eq r(|AD|2|PD|2)eq r(r(2)2blc(rc)(avs4alco1(f(r(2),2)2)eq f(r(10),2),eq f(|PA|2|PB|2,|PC|2)eq f(f(5,2)f(5,2),f(1,2)10.答案D二、填空题:本大题共4小题,每题5分,共20分,把答案填在题中横线上7(新课标)向量a,b夹角为45,且|

6、a|1,|2ab|eq r(10),那么|b|_.解析设|b|x,abeq f(r(2),2)x,|2ab|eq r(10),42eq r(2)xx210,解得x3eq r(2)(负值舍去)答案3eq r(2)8(安徽)假设平面向量a,b满足|2ab|3,那么ab的最小值是_解析|2ab|34a2b294ab,4a2b24|a|b|4ababeq f(9,8).答案eq f(9,8)9(江苏)如图,在矩形ABCD中,ABeq r(2),BC2,点E为BC的中点,点F在边CD上,假设eq o(AB,sup15()eq o(AF,sup15()eq r(2),那么eq o(AE,sup15()eq

7、 o(BF,sup15()的值是_.解析如图,以A为坐标原点,以AB为x轴,AD为y轴建立直角坐标系,那么A(0,0),B(eq r(2),0),E(eq r(2),1)设F(m,2),由eq o(AF,sup15()eq o(AB,sup15()(m,2)(eq r(2),0)eq r(2)meq r(2),得m1,那么F(1,2),所以eq o(AE,sup15()eq o(BF,sup15()(eq r(2),1)(1eq r(2),2)eq r(2).答案eq r(2)10(山东)如图,在平面直角坐标系xOy中,一圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x

8、轴上沿正向滚动当圆滚动到圆心位于(2,1)时,eq o(OP,sup15()的坐标为_解析由题意可知圆心移动之后,圆转过的弧长为2,可得圆心角的弧度数为2,所以PMN2eq f(,2),eq blcrc (avs4alco1(xP2cosPMN,,yP1sinPMN,)于是可以计算点P的坐标为(2coseq blc(rc)(avs4alco1(2f(,2),1sineq blc(rc)(avs4alco1(2f(,2)即为(2sin2,1cos2)答案(2sin2,1cos2)三、解答题:本大题共2小题,共25分解容许写出文字说明、证明过程或演算步骤11(12分)(新课标)a,b,c分别为AB

9、C三个内角A,B,C的对边,acosCeq r(3)asinCbc0.(1)求A;(2)假设a2,ABC的面积为eq r(3),求b,c.解(1)由acosCeq r(3)asinCbc0及正弦定理得sinAcosCeq r(3)sinAsinCsinBsinC0.因为BAC,所以eq r(3)sinAsinCcosAsinCsinC0.由于sinC0,所以sineq blc(rc)(avs4alco1(Af(,6)eq f(1,2).又0A,故Aeq f(,3).(2)ABC的面积Seq f(1,2)bcsinAeq r(3),故bc4.而a2b2c22bccosA,故b2c2bc2.12(

10、13分)(江西)在ABC中,角A,B,C的对边分别为a,b,c.Aeq f(,4),bsineq blc(rc)(avs4alco1(f(,4)C)csineq blc(rc)(avs4alco1(f(,4)B)a.(1)求证:BCeq f(,2);(2)假设aeq r(2),求ABC的面积解(1)由bsineq blc(rc)(avs4alco1(f(,4)C)csineq blc(rc)(avs4alco1(f(,4)B)a,应用正弦定理,得sinBsineq blc(rc)(avs4alco1(f(,4)C)sinCsineq blc(rc)(avs4alco1(f(,4)B)sinA,sinBeq blc(rc)(avs4alco1(f(r(2),2)sinCf(r(2),2)cosC)sinCeq blc(rc)(avs4alco1(f(r(2),2)sinBf(r(2),2)cosB)eq f(r(2),2),整理得sinBcosCcosBsinC1,即sin(BC)1,由于0B,Ceq f(3,4),从而BCeq f(,2).(2)BCAeq f(3,4),因此Beq f(5,8),Ceq f(,8).由aeq r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论