




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学课堂教学设计研究数学课堂教学设计研究勐腊县第二中学勐腊县第二中学王有成王有成数学课堂教学设计研究数学课堂教学设计研究一、教育观与教学设计一、教育观与教学设计二、教学设计的内涵二、教学设计的内涵三、关于教学目标的思考三、关于教学目标的思考四、教学设计的基本原则四、教学设计的基本原则五、课堂教学结构的选择五、课堂教学结构的选择六、课堂教学设计的基本环节六、课堂教学设计的基本环节一、教育观与课堂教学设计一、教育观与课堂教学设计 教育观:教育观:以学生为本以学生为本 本质与核心:以学生的发展为本本质与核心:以学生的发展为本 促进学生身心的全面、和谐与可持续发展促进学生身心的全面、和谐与可持续发展
2、注重个性差异,追求教学质量和课堂效益注重个性差异,追求教学质量和课堂效益 “ “以学生为本以学生为本”的教育观体现了社会发展的的教育观体现了社会发展的新要求,体现基础教育性质的变化,是教学新要求,体现基础教育性质的变化,是教学设计的根本指导思想设计的根本指导思想二、教学设计的内涵二、教学设计的内涵 教学设计是教师为达到教学目教学设计是教师为达到教学目标而对课堂教学过程与行为所标而对课堂教学过程与行为所进行的系统规划。进行的系统规划。 主要解决主要解决“教什么教什么”和和“怎么怎么教教”两个问题两个问题 。教学需要设计的主要理由教学需要设计的主要理由 由学校教育的性质决定的。由学校教育的性质决定
3、的。 学生智力的发展依赖于科学的、规律性的学生智力的发展依赖于科学的、规律性的知识知识和有目的、有计划、有指导的启发式和有目的、有计划、有指导的启发式教学教学。 教师在教学中的主导地位必须强调。教师在教学中的主导地位必须强调。 只讲教师是教学的组织者、引导者、合作只讲教师是教学的组织者、引导者、合作者是不够的。者是不够的。 实现教学过程科学化的需要。实现教学过程科学化的需要。 目的:提高教学质量和效益目的:提高教学质量和效益使学使学生以尽量少的时间、精力等的投入获生以尽量少的时间、精力等的投入获得尽量多的收获。得尽量多的收获。 教学过程科学化体现了对教师的专业教学过程科学化体现了对教师的专业化
4、要求。化要求。三、关于教学目标的思考三、关于教学目标的思考教学目标是教学目的的系统化、具体教学目标是教学目的的系统化、具体化,是教学活动每一阶段所要实现的化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。教学结果,是衡量教学质量的标准。教学目标的设计必须建立在对学生情教学目标的设计必须建立在对学生情况全面了解、对教学内容精确分析的况全面了解、对教学内容精确分析的基础上。基础上。1.1. 教学目标必须是可观察的。教学目标必须是可观察的。 关于教学目标分类的思考关于教学目标分类的思考三层级模型三层级模型第一层级第一层级主成分以记忆为主要标志主成分以记忆为主要标志, ,培养的是培养的是
5、以记忆为主的基本能力。测试看基以记忆为主的基本能力。测试看基本事实、方法的记忆水平,标准是:本事实、方法的记忆水平,标准是:获得的知识量以及掌握的准确性。获得的知识量以及掌握的准确性。第二层级第二层级主成分以理解为主要标志,培养的是以理解主成分以理解为主要标志,培养的是以理解为主的基本能力,测试看能否顺利地解决常为主的基本能力,测试看能否顺利地解决常规性、通用性问题,包括能否满意地解决综规性、通用性问题,包括能否满意地解决综合性问题。测试标准是:运用知识的水平,合性问题。测试标准是:运用知识的水平,如正确、敏捷、灵活、深刻等。如正确、敏捷、灵活、深刻等。第三层级第三层级主成分以探究为主要标志,
6、培养以评主成分以探究为主要标志,培养以评判为主的基本能力,测试看能否对解判为主的基本能力,测试看能否对解决问题的过程进行反思,即检验过程决问题的过程进行反思,即检验过程的正确性、合理性及其优劣。标准是的正确性、合理性及其优劣。标准是思维的深刻性、批判性、全面性、独思维的深刻性、批判性、全面性、独创性等。创性等。陈述教学目标的要求陈述教学目标的要求 反映数学的学科特点,反映当前学习内容的本质。反映数学的学科特点,反映当前学习内容的本质。 可观测:清楚陈述学习后有什么变化。可观测:清楚陈述学习后有什么变化。例例1 1 掌握一元二次方程根的判别式。掌握一元二次方程根的判别式。 对对“掌握掌握”的内涵
7、作具体界定。重要概念要考的内涵作具体界定。重要概念要考虑作适当分解:虑作适当分解: (1)在用配方法推导一元二次方程求根公式的过程)在用配方法推导一元二次方程求根公式的过程中,掌握判别式的结构和作用;中,掌握判别式的结构和作用; (2)能用判别式判断一个一元二次方程是否有解;)能用判别式判断一个一元二次方程是否有解; (3)能用判别式讨论一个含字母系数的一元二次方)能用判别式讨论一个含字母系数的一元二次方程的解;程的解; (4)能灵活应用判别式解决其他情境中的问题。)能灵活应用判别式解决其他情境中的问题。例例2 2 理解函数单调性概念。理解函数单调性概念。 这一陈述中,需要对这一陈述中,需要对
8、“理解理解”的含义作具体的含义作具体界定,以使我们能准确把握学生是否已经达界定,以使我们能准确把握学生是否已经达到到“理解理解”。实际上,。实际上,“理解理解”的基本含义的基本含义是学生能用概念作出判断。因此可以改述为:是学生能用概念作出判断。因此可以改述为: 能给出增函数、减函数的具体例证和图象特能给出增函数、减函数的具体例证和图象特征;能用函数单调性定义判断一个函数的单征;能用函数单调性定义判断一个函数的单调性。调性。 要防止教学目标要防止教学目标“高大全高大全”,有的甚至是,有的甚至是“假大空假大空”,目标,目标“远大远大”、空洞,形同虚、空洞,形同虚设。例如,一堂课的目标中含有:设。例
9、如,一堂课的目标中含有: 培养学生的数学思维能力和科学的思维方式;培养学生的数学思维能力和科学的思维方式; 培养学生勇于探索、创新的个性品质;培养学生勇于探索、创新的个性品质; 体验数学的魅力,激发爱国主义热情;体验数学的魅力,激发爱国主义热情; 等等。等等。四、教学设计的基本原则四、教学设计的基本原则1.1.情意原则情意原则激发学习动机,提高学习兴趣激发学习动机,提高学习兴趣(1 1)问题性;)问题性; (2 2)思维最近发展区内的学习任务;)思维最近发展区内的学习任务; (3 3)使用)使用“反馈反馈调节调节”机制。机制。例例3 “3 “诱导公式诱导公式”教学中几种提问的比较。教学中几种提
10、问的比较。 你能利用圆的几何性质推导出三角函数的诱你能利用圆的几何性质推导出三角函数的诱导公式吗?导公式吗? +180的终边、的终边、的终边与单位圆的交点有的终边与单位圆的交点有什么关系?能由此得出什么关系?能由此得出sin(+180)与与sin之之间的关系吗?间的关系吗? 我们可以通过查表求锐角三角函数值,那么,我们可以通过查表求锐角三角函数值,那么,如何求任意角的三角函数值呢?能否将任意如何求任意角的三角函数值呢?能否将任意角的三角函数转化为锐角三角函数?角的三角函数转化为锐角三角函数? 问题情境:问题情境: 三角函数与(单位)圆是紧密联系的,它的三角函数与(单位)圆是紧密联系的,它的基本
11、性质是圆的几何性质的代数表示,例如,基本性质是圆的几何性质的代数表示,例如,同角三角函数的基本关系表明了圆中的某些同角三角函数的基本关系表明了圆中的某些线段之间的关系。圆有很好的对称性:以圆线段之间的关系。圆有很好的对称性:以圆心为对称中心的中心对称图形;以任意直径心为对称中心的中心对称图形;以任意直径为对称轴的轴对称图形。你能否利用这种对为对称轴的轴对称图形。你能否利用这种对称性,借助单位圆,讨论一下终边与角称性,借助单位圆,讨论一下终边与角的终的终边关于原点、边关于原点、x轴、轴、y轴以及直线轴以及直线y = x对称的对称的角与角角与角的关系以及它们的三角函数之间的关的关系以及它们的三角函
12、数之间的关系?系?2 2结构化原则结构化原则教学内容结构化,教学内容结构化,保持思想方法的前后一致性保持思想方法的前后一致性结构化教学内容的特点结构化教学内容的特点 核心知识(基本概念及由内容所反映的数学核心知识(基本概念及由内容所反映的数学思想方法)为联结点,精中求简,易学、好思想方法)为联结点,精中求简,易学、好懂、能懂、会用,能切实减轻学生负担;懂、能懂、会用,能切实减轻学生负担; 形成概念的网络系统,联系通畅,便于记忆形成概念的网络系统,联系通畅,便于记忆与检索;与检索; 具有自我生长的活力,容易在新情境中引发具有自我生长的活力,容易在新情境中引发新思想和新方法。新思想和新方法。“结构
13、化结构化”的几个具体要求的几个具体要求 (1 1)教学目标明确,削支强干,重点突出,集中精)教学目标明确,削支强干,重点突出,集中精力于核心内容。力于核心内容。 (2 2)教学内容安排注重层次结构,张弛有序,循序)教学内容安排注重层次结构,张弛有序,循序渐进。由浅入深,由易到难,先简后繁,先单一后渐进。由浅入深,由易到难,先简后繁,先单一后综合。综合。 (3 3)每堂课都围绕一个中心论题展开和深化,精心)每堂课都围绕一个中心论题展开和深化,精心组织相关的数学成分,使相应的核心概念或重要思组织相关的数学成分,使相应的核心概念或重要思想成为一个有机整体,相关的数学术语、定义、符想成为一个有机整体,
14、相关的数学术语、定义、符号、概念、技能等因素都得到仔细的展开;课与课号、概念、技能等因素都得到仔细的展开;课与课之间建立精当的序列关系,保持知识的连贯性,思之间建立精当的序列关系,保持知识的连贯性,思想方法的一致性。易错、易混淆的问题有计划地复想方法的一致性。易错、易混淆的问题有计划地复现和纠正,使知识得到螺旋式的巩固和提高。现和纠正,使知识得到螺旋式的巩固和提高。 例例4 4 平面向量的结构化教学设计平面向量的结构化教学设计 代数角度代数角度 位置位置位移向量位移向量向量的加法向量的加法向量向量的减法和数乘运算的减法和数乘运算运算律运算律 几何角度几何角度 一个点一个点A、一个方向、一个方向
15、e可以定性刻画一条直线;可以定性刻画一条直线;引进向量数乘运算引进向量数乘运算ke,那么直线上每一个点,那么直线上每一个点X就可以定量表示为就可以定量表示为k1e; 一个点一个点A、两个不平行的方向、两个不平行的方向e1,e2在在“原则原则”上确定了平面(定性刻画);引入向量的加上确定了平面(定性刻画);引入向量的加法运算法运算e1+e2,那么平面上每一个点,那么平面上每一个点X就可以就可以定量表示为定量表示为k1e1+k2e2。 向量的数量积向量的数量积ab=|a|b|cos, 使几何中讨论的长度、角度、面积等转化为使几何中讨论的长度、角度、面积等转化为对向量的表达和运算。对向量的表达和运算
16、。 空间的基本性质和几何的基本定理都能有系空间的基本性质和几何的基本定理都能有系统地转换成向量代数中的运算律。统地转换成向量代数中的运算律。 平面向量教学的结构系列平面向量教学的结构系列 (1 1)借助位移、有向线段引入向量概念;)借助位移、有向线段引入向量概念;(2 2)借助位移合成定义向量加法运算;类比数的减)借助位移合成定义向量加法运算;类比数的减法、乘法运算引进向量的减法运算和数乘运算;法、乘法运算引进向量的减法运算和数乘运算;(3 3)向量运算的几何意义,运算律及其几何含义;)向量运算的几何意义,运算律及其几何含义;(4 4)从度量长度、角度等的需要出发,引入向量的)从度量长度、角度
17、等的需要出发,引入向量的数量积概念,考察其几何意义,运算律;数量积概念,考察其几何意义,运算律;(5 5)与解析法建立联系,考察向量的分解(平面向)与解析法建立联系,考察向量的分解(平面向量基本定理)及坐标表示,并考察在坐标表示下的量基本定理)及坐标表示,并考察在坐标表示下的一些基本问题(向量运算的坐标表示,向量度量关一些基本问题(向量运算的坐标表示,向量度量关系的坐标表示,等等)。系的坐标表示,等等)。关于概念教学的一些要求关于概念教学的一些要求(1 1)采取)采取“归纳式归纳式”进行概念教学,让学生进行概念教学,让学生经历概念的概括过程;经历概念的概括过程;(2 2)正确、充分地提供概念的
18、变式;)正确、充分地提供概念的变式;(3 3)适当应用反例;)适当应用反例;(4 4)在概念的系统中学习概念,建立概念的)在概念的系统中学习概念,建立概念的“多元联系表示多元联系表示”;(5 5)精心设计练习。)精心设计练习。3 3过程性原则过程性原则按照知识的发生发展过程按照知识的发生发展过程和学生的认知过程,精心设计概括活动和学生的认知过程,精心设计概括活动过程过程处理好抽象与具体的关系处理好抽象与具体的关系 抽象是数学的一个公认的、最显著的特点抽象是数学的一个公认的、最显著的特点 数学的抽象是从具体中得来的,具体中蕴含数学的抽象是从具体中得来的,具体中蕴含了本质了本质 从具体中可以进行多
19、次抽象从具体中可以进行多次抽象 可以从不同的角度进行抽象可以从不同的角度进行抽象贯彻过程性原则的具体要求贯彻过程性原则的具体要求(1 1)通过分析)通过分析“两个过程两个过程”,明确概括过程的主导,明确概括过程的主导思路,围绕这条思路确定猜想和发现的方案;思路,围绕这条思路确定猜想和发现的方案;(2 2)在把概括的结论具体化的过程中,推动对概念)在把概括的结论具体化的过程中,推动对概念细节的认识;细节的认识;(3 3)通过变式、反思、系统化,建立概念的联系,)通过变式、反思、系统化,建立概念的联系,形成概念体系;形成概念体系;(4 4)强调类比、特殊化、推广等具有普适性的逻辑)强调类比、特殊化
20、、推广等具有普适性的逻辑思考方法的应用。思考方法的应用。 以科学认识的形成与发展途径为参照设计概括过程以科学认识的形成与发展途径为参照设计概括过程(1 1)创设问题情境,引起学生对新知识的注意与思)创设问题情境,引起学生对新知识的注意与思考;考;(2 2)开展观察、试验、类比、猜想、归纳、概括、)开展观察、试验、类比、猜想、归纳、概括、特殊化、一般化等活动,形成假设;特殊化、一般化等活动,形成假设;(3 3)利用已有知识进行推理论证活动,检验假设,)利用已有知识进行推理论证活动,检验假设,获得新知识,并纳入到已有认知结构中;获得新知识,并纳入到已有认知结构中; (4 4)新知识的应用,加深理解
21、(理在用中方知妙),)新知识的应用,加深理解(理在用中方知妙),建立相关知识的联系,巩固新知识。建立相关知识的联系,巩固新知识。 例例5 5 不等式基本性质的猜想证明应用不等式基本性质的猜想证明应用 (1 1)引导学生回忆规定实数大小方法(顺序公理,)引导学生回忆规定实数大小方法(顺序公理,数形结合);数形结合);(2 2)引导学生认识实数大小的基本事实的本质和作)引导学生认识实数大小的基本事实的本质和作用(实数大小比较归结为统一的与用(实数大小比较归结为统一的与0 0的大小比较或的大小比较或判断差的符号问题);判断差的符号问题);(3 3)等式有)等式有“等式两边同加(减)一个数,等式仍等式
22、两边同加(减)一个数,等式仍然成立然成立”“”“等式两边同乘(除)一个数,等式仍然等式两边同乘(除)一个数,等式仍然成立成立”等基本性质。可以看到,等式的基本性质就等基本性质。可以看到,等式的基本性质就是是“运算中的不变性运算中的不变性”。类似的,不等式有哪些基。类似的,不等式有哪些基本性质呢?本性质呢?(4)尝试用实数大小的基本事实证明性质;)尝试用实数大小的基本事实证明性质;(5)辨析不等式的基本性质(与等式问题比)辨析不等式的基本性质(与等式问题比较,考察异同;不同语言表述性质;等等);较,考察异同;不同语言表述性质;等等);(6)尝试从基本性质出发,得出一些新的结)尝试从基本性质出发,
23、得出一些新的结论(如论(如ab,cd,则,则acbd););(7)概括思想方法(与实数性质、等式性质)概括思想方法(与实数性质、等式性质的联系性;在数与运算的系统中考察关于实的联系性;在数与运算的系统中考察关于实数大小的基本定理;等等)。数大小的基本定理;等等)。4 4有效调控原则有效调控原则使用使用“反馈调节反馈调节”机制,机制, 有效监控教学有效监控教学目的:将教学活动围绕在学生思维目的:将教学活动围绕在学生思维“最近发展区最近发展区”内。内。需要学生自我监控的参与。需要学生自我监控的参与。反馈要注重差异,调节要采取分化性措施:反馈要注重差异,调节要采取分化性措施: (1 1)给不同的学生
24、提供不同类别的专门帮助;)给不同的学生提供不同类别的专门帮助;(2 2)布置可选择的作业集合,以满足不同学生的不)布置可选择的作业集合,以满足不同学生的不同需求;同需求;(3 3)认真考虑学生的个人爱好,机智地将其纳入课)认真考虑学生的个人爱好,机智地将其纳入课堂教学。堂教学。五、课堂教学结构的选择五、课堂教学结构的选择1.1.课堂教学结构应当与教育对象、教课堂教学结构应当与教育对象、教学内容相适应;学内容相适应;2.2.课堂教学结构应当以学生思维规律课堂教学结构应当以学生思维规律为依据;为依据;3.3.课堂教学结构设计以对知识、学习课堂教学结构设计以对知识、学习概念的正确认识为基础。概念的正
25、确认识为基础。五环节课堂教学结构五环节课堂教学结构(1 1)创设问题情境,明确学习目标;)创设问题情境,明确学习目标;(2 2)指导学生开展尝试活动;)指导学生开展尝试活动;(3 3)组织变式训练;)组织变式训练;(4 4)认知结构的组织和再组织;)认知结构的组织和再组织;(5 5)根据教学目标,及时反馈调节。)根据教学目标,及时反馈调节。六、课堂教学设计的基本环节六、课堂教学设计的基本环节1 1背景分析。背景分析。(1 1)学习任务分析。重点:本堂课的核)学习任务分析。重点:本堂课的核心概念、数学思想方法;前后相关的知心概念、数学思想方法;前后相关的知识;识;(2 2)学生情况分析。重点:学
26、生已有认)学生情况分析。重点:学生已有认知结构与新内容之间的潜在距离。知结构与新内容之间的潜在距离。2 2教学目标的设计。重点:通过学习,教学目标的设计。重点:通过学习,学生能做哪些过去不能做的事。学生能做哪些过去不能做的事。3 3课堂结构的设计。重点:数学知识的课堂结构的设计。重点:数学知识的逻辑顺序、教学活动顺序。逻辑顺序、教学活动顺序。4 4教学媒体的设计。重点:适应学习需教学媒体的设计。重点:适应学习需要,有利于揭示数学本质。要,有利于揭示数学本质。5 5教学过程的设计。重点:引导学生概教学过程的设计。重点:引导学生概括活动的括活动的“问题串问题串”;变式训练;反思;变式训练;反思活动
27、;过程性评价。活动;过程性评价。例例6 等差数列求和公式教学设计等差数列求和公式教学设计 高斯是如何想到求高斯是如何想到求1+2+1001+2+100的简便方法的?的简便方法的? 一个猜测:一个猜测: 第一,他知道常数数列求和最简单;第一,他知道常数数列求和最简单; 第二,他观察到和式的特点,懂得用第二,他观察到和式的特点,懂得用“平均数平均数”思想将不同数的求和化归为常数数列求和。思想将不同数的求和化归为常数数列求和。 上述猜测是从一个具体问题中归纳的,但反映上述猜测是从一个具体问题中归纳的,但反映了等差数列求和的最核心思想。了等差数列求和的最核心思想。问题引导下的教学过程问题引导下的教学过程 你知道小高斯是如何求你知道小高斯是如何求1+2+1001+2+100的吗?的吗? 这一方法的思想实质是什么(为什么要这一方法的思想实质是什么(为什么要“首尾相加首尾相加”)?)? 类似的,你能求类似的,你能求1+2+1+2+n吗?吗? 对于公差为对于公差为d d的等差数列的等差数列an,如何利用,如何利用 上述思想方法求上述思想方法求Sn=a1+a2+an? 还有其他方法吗?还有其他方法吗?七、直线的参数方程的教学设计七、直线的参数方程的教学设计教学任务分析教学任务分析 适当选择原点和单位长度,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届浙江省台州市高三二模语文试题 含答案
- 2025年大学统计学期末考试题库-统计调查实施技巧与应用试卷
- 2025年初中地理模拟试卷:环境与可持续发展考点解析
- 2025年《机电工程管理与实务》考试法规题库:法规条文深度解析与应用
- 2025年消防执业资格考试题库:消防技术标准规范案例分析高频错题集试题
- 2025年电子产品代理年度合同
- 2025年中学教师资格《综合素质》学生心理辅导案例解析与试题汇编
- 2025年大学统计学期末考试题库:统计推断与检验多元统计试题
- 2025年消防执业资格考试题库(消防应急通信保障)通信安全保障策略解析试题
- 云南旅游职业学院《运动安全与健康》2023-2024学年第一学期期末试卷
- 工资福利政策讲座
- 卓越绩效调研提纲
- 【经典】一次性使用氧气湿化瓶-一次性使用加湿型鼻氧管介绍教学课件
- Unit2HelpingEachOtherPartA(教学设计)闽教版英语六年级下册
- 危重患者护理质量管理查检表
- 2023年四川二造《建设工程造价管理基础知识》高频核心题库300题(含解析)
- 班主任的智慧与对策
- 细胞课件 细胞死亡
- 石灰石粉粉检测报告
- 部编版道德与法治六年级上册第二单元《我们是公民》大单元作业设计
- 内科学肺炎(课件)
评论
0/150
提交评论