七年级数轴经典题型总结[含答案解析]_第1页
七年级数轴经典题型总结[含答案解析]_第2页
七年级数轴经典题型总结[含答案解析]_第3页
七年级数轴经典题型总结[含答案解析]_第4页
七年级数轴经典题型总结[含答案解析]_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、完美WORD格式资料七年级数轴经典题型总结(含答案)【1、数轴与实际问题】例1国际标准时间(时)纽约多伦多伦敦北京首尔IIII-5 -408 95个城市的国际标准时间(单位:时)在数轴上表示如下,那么北京时间2006年6月17日上午9时应是()A、伦敦时间2006年6月17日凌晨1时城市名称时差北京时间当地时间纽约-5-8=-1317日上午9时9- 13=- 4, 244=20, 17 日晚上 20 时多伦多-4-8=-1217日上午9时9-12=- 3, 243=21, 17 日晚上 21 时伦敦0 8= 817日上午9时9 8=1, 16日凌晨1时首尔9- 8=+ 117日上午9时9+1=

2、10, 16日上午10时B、纽约时间 2006年6月17日晚上22时C、多伦多时间 2006年6月16日晚上20时D、首尔时间 2006年6月17日上午8时解:观察数轴很容易看出各城市与北京的时差例2在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所。已知青少年宫在学校东300米处,商场在学校西 200米处,医院在学校东 500米处。将马路近似地看成一条直线,以学校为原点,以正东方向为正方向,用 1个单位长度表示100米。在数轴上表示出四家公共场所的位置。计算青少年宫与商场之间的距离。解:商场医院(1)1111*1_*1(1)学校青少年宫x(2)青少年宫与商场相距:3(2)=5个

3、单位长度所以:青少年宫与商场之间的距离=5X 100=500(米 )练习1、如图,数轴上的点P、Q Q R S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A、R站点与S站点之间B 、P站点与O站点之间*4 3.7C、O站点与Q站点之间 D 、Q站点与R站点之间解:判断公交车在 P点右侧,距离 P: ( 1.3)+3=1.7(km),即在原点 O右侧1.7处,位于 Q R 间而公交车距 Q站点0.7km,距离 Q 0.7+1=1.7(km),验证了,这辆公交车的位置在Q、R间2、如图,在一条数轴上有依次排列的5台机床在工作,现要设

4、置一个零件供应站P ,使这5台机床到供应站 P的距离总和最小,点 P建在哪?最小值为多少?解:(此题是实际问题,涉及绝对值表示距离,后面会有更深入的理解)A B C DE此题揭示了,问题过于复杂时,要“以退为进”,回到问题A-1的起点,找出规律。后面你还会遇到这种处理问题的办法。(1)假设数轴上只有 A B二台机床时,很明显,供应站P应该是设在 A和B之间的任何地方都行,反正P至ij A和P至ij B的距离之和就是 A至ij B的距离,值为:1-(-1)=2 ;(2)假设数轴上有 A、B、C三台机床时,我们不难想到,供应站设在中间一台机床B处最合适,因为如果P放在B处,P到A和P到C的距离之和

5、恰好为 A到C的距离,而如果把 P放在 别处,如原点处,P到A和P到C的距离之和仍是 A到B的距离,可是 B机床到原点还有一段距离,这是多出来的,所以, P设在B处时,P到A、B、C的距离总和最小,值为: 2 一 (T)=3;(3)如果数轴上有A、B、C、D四台机床,经过分析,P应设BC之间任何地方,此时P至ijA、BC、D的距离总和最小,值为:4( 1)+BC距离=5+1=6;(4)如果数轴上有有 5台机床呢,经过分析, P应设在C处,此时P到5台机床的距离总和最 小,值为:AE距离+BC距离+CD距离=9+1+2=12;(5)扩展:如果数轴上有n台机床,要找一点 P,使得P到各机床距离之和

6、最小,“n-1,、E如果n为奇数,P应设在第 二台的位置如果n为偶数,P可设在第n台和第(n十1)台之间任意位置规律探索无处不在,你体会到了吗?此题可变为:A、当x为何值时,式子|x+1|十|x1| +|x2|十|x4|+|x8|有最小值,最小值为多少?B、求 |x_1| +|x_2|+|x_3| +.+|x_617| 的最小值。3、老师在黑板上画数轴,取了原点O后,用一个铁丝做的圆环作为工具,以圆环的直径在数轴上画出单位长 1,再将圆环拉直成一线段,在数轴的正方向上以此线段长自原点O起截得A专业整理分享点,则A点表示的数是解:由题知:直径为 1个单位长度,那么半径为1的单位长度,2圆的周长为

7、:一 1,一、2nx- =n个单位2长度圆从原点沿着数轴的正方向拉直,那么点A表示的数就是要注意审题,此题告诉我们无理数也可以在数轴上表示出来。【2、数轴与比较有理数的大小】例3 已知a、b、c在数轴上的位置如图则在-a , c b , c+a中,最大的一个是 (A. -aB . c -b C .c+a-1解:应试法:设数代入计算下最快速,如设4 a=5b=1, C=-, 一下就可以得出答案 25正式的做法就是分析,a是负数且介于1N间,那么 是正数且大于 1,a的相反数,应该在C附近,cb显然也是小于 1, c+a由图知趋近于0,综上,答案还是 D例4三个有理数a、b、c在数轴上的位置如图所

8、示,则(A.c -ac -b1a -b1b -c1c -aC.c a1b a1b -ca b a c解:应试法:设数代入计算下最快速,如设c=1 , b=2, c=4,代入计算,可以得出答案正式的做法就是逐个分析,采取排除法,跳出正确选项。A 中,c -a 0,c-b 0 ,显然错误;11B 中,b c 0,c a 0,ba 0 , *|c a|)b a |,. c ab a,a ,因此 B对c-a b- ac -a与b -a都是负数,绝对值大的,反而小,取倒数,分母大的,反而小D为什么错自己试一试分析。练习1、己知a, b两数在数轴上对应的点如图所示,下列结论正确的是(B . ab 0解:由

9、题知 b a 0D . a b 0b -i 0 a 1解:由题知,b0 a |a|,b a ,则 a +b c0 ,故 A、D错;a 0,-b 0a -b 0 ,故 C 对3、若两个非零的有理数a、b,满足:|a|=a , |b|=-b , a+b 0,则在数轴上表示数a、b的点正确的是()A、C、解:|a|=a ,说明a之0, |b|=-b ,则b 0 , a+b0,说明|a|b| |c| ,那么该数轴的原点O的位置应该在()1fA、点A的左边 B 、点A与点B之间 -bCC、点B与点C之间 D 、点B与点C之间或点C的右边解:答案D,用排除法例6如图,数轴上标出若干点,每相邻的两点相距一个

10、单位长度,点A、B、G D对应的数分别为整数a、b、c、d,且d 2a=4。试问:数轴上的原点在哪一点上?解:由于每相邻的两点相距一个单位长度所以有:d=a+3,代入式子d -2a =4M A B C D N则a=_1,所以原点在 B处练习1、在数轴上,坐标是整数的点称为“整点” 。设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2008厘米的线段 AR 则线段AB盖住的整点至少有 个,至多有 个。解:2008太大,以退为进,假设线段 AB长为1,易知AB盖住的整点至少有 1个,至多有2个 假设线段AB长为2,易知AB盖住的整点至少有 2个,至多有3个,所以: 本题,线段 AB盖住的整点

11、至少有 2008个,至多有2009个。2、如图,数轴上标出若干个点,每相邻两点相距1个单位,点 A、R C D对应的整数 a、b、c、d,且b -2a =9 ,那么数轴的原点对应点是()。A、A点 B 、B点 C 、C点D 、D点解:由题知,b =a +4 ,代入b -2a =9_则a=-5,b=,所以原点是C点3、如图所示,圆的周长为4个单位长度,在圆的 4等分点处标上字母 A, B, C, D,先将圆周上的字母A对应的点与数轴的数字 1所对应的点重合,若将圆沿着数轴向左滚动,那么数轴上的-A对应1, B对应0, C对应1, D对应2,以此类推,4个数为1循环节而2012+ 4=303余数0

12、,正好循环完,所以数轴上的2010所对应的点是 D【4、与数轴有关的计算】例7 如图所示,在数轴上有六个点,点F所表示的数是8, AF = 4且AB =BC =CD =DE =EF , 则与点C所表示的数最接近的整数是 A B C D E F解:可用方程来做,没学就这么做因为 af =4, AB =BC =CD =DE =EF易知:AB =BC =CD =DE =EF =0.8 ,则C至U F: 0.8 X 3=2.4,因为点F所表示的数是 8所以点C表示的数:82.4=5.6 ,那么与5.6最接近的整数是 6例8上午8点,某人驾驶一辆汽车从A地出发,向东记为正,向西记为负。记录前4次行驶过程

13、如下:-15公里,+25公里,-20公里,+30公里,若要汽车最后回到A地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去 2小时,问他回到A地的时间?解:前4次行驶完成后,汽车位于:15+2520+30=20 A点东边20公里处若要汽车最后回到 A地,则最后一次:40,即向西行进20公里总共路程:|_15|&5+|-20|母0+|-20|二110,路上花费时间:110+ 55=2 小时期间他办事花去 2小时,所以总共耗时4小时,他回到 A地的时间:8+4=12练习1、如图,数轴上有6个点,且相邻两点间的距离都相等,则与D点所表示的数最接近的整数是 O解:AF=7

14、_(力)=12, AB =BC =CD =DE =EF-AC U r11111则 AB =BC =CD =DE =EF =12 + 5=2.4则A到C距离:2.4 X 2=4.8,因为点A所表示的数是 5 ,所以点C表示的数是:W+4.8 = -0.2 故与-0.2最接近的整数是 02、某一电子昆虫落在数轴上的某点 k。,从笈点开始跳动,第1次向左跳1个单位长度到 K ,第 2次由k1向右跳2个单位长度到k2 ,第3次由k2向左跳3个单位长度到 k3 ,第4次由k3向右跳 4个单位长度到k4,依此规律跳下去,当它跳第 100次落下时,电子昆虫在数轴上的落点K00表示的数恰好是2010,则电子昆

15、虫的初始位置 区所表示的数是 o解:向左为负,向右为正,电子昆虫所走过的路程S为:S= -1 2 -3 4 -.-99 100=(2 4 6 . 100) -(1 3 5 . 99)其中 2+4+6+100= (2 100) 50 =255021+3+5+-+99= (1 99) 50 =25002故 S=2550-2500=50由题知:&+50=2010,故 k=19603、一青蛙要从 A点跳到B点,以平均每分钟 2米的速度跳跃。它先前进 1米,再后退2米,又 前进3米,再后退4米,(每次跳跃都在A B两点所在的直线上)(1) 5分钟后它离 A点多远?(2)若A、B两点相距100米,它可能到

16、达 B点吗?如果能,它第一次到达B点需要多长时间?如果不能,请说明理由。解:(1) 5分钟青蛙走过路程 S=5X2=10米,路程S还可表示为:S=1 + |-2|+3+|-4|=10 设A点为数轴原点,记前进为正,后退为负,5分钟后青蛙在:省_2+3 4 =-2 ,即5分钟后它离 A点2米(2)由第一问我们可以看出,青蛙每跳2次,从A点向B点前进1米,因为AB两点相距100米,所以青蛙要跳 200次才可以到达 B点,所以青蛙青蛙跳跃的总路程为1+2+3+199+200= ( 1+200) X 200+ 2=20100 (米),贝IJ需要 20100+2=10050 (分钟)三、利用数轴,深入认

17、识绝对值例9 观察下列每对数在数轴上的对应点间的距离4与2, 3与5, 2与6, 4与3。并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗? (2) | x |的几何意义是数轴上表示 的点与 之间的距离;按照(1)的理解,| x| x-0| ( ,=, 3的x的取值范围为解:(1)将x=直接彳入x2 x+2计算,结果:4(2) x-2 +x+3的几何意义:点 x到点2的距离加上点 x到点3的距离。要使距离之和最小如图,当x 2 ,需分情况讨论:1 - jIvj1 ax -3 O 2 xJB|a|J1- I j-一-3 O 2 x x如图,当-3x3的几何意义:找出一个点

18、x,使得x到一1与x至IJ -4的距离之和大于3,按照(2)的分析,点 x在4与1之间时,x + 1 + x + 4=3,故点x只要不在4与1之间即可。所以 x的取值范围是: x1练习 1、如图表示数轴上四个点的位置关系,且它们表示的数分别为若 p r =10 , p -s =12 , q s =9 ,则 q r =解:p r =10表示P、r之间距离10,p-s|=12表示P、s之间距离12,所以r、s之间距离是 2, q-s =9 ,表示q、s之间距离9,q _r表示q、r之间的距离,它等于 q、s间距离减去r、s间距离,即:q -r =9-2=72、不相等的有理数 a, b, c在数轴上

19、的对应点分别为 A, B, C,如果a b +|bc = ac ,那么点A, B, C在数轴上的位置关系是()A.点A在点B, C之间B.点B在点A , C之间C.点C在点A, B之间D.以上三种情况均有可能解:a -b 1b -c =|a -c的几何意义:a点到b点的距离加上 b点到c点的距离之和等于 a点到c点的距离。显然 b点在a、c之间。3、(1)阅读下面材料(距离公式的证明,应该自己能分析):点A、B在数轴上分别表示实数a,b, A、B两点这间的距离表示为AB当A、B两点中有一点在原点时,不妨设点A在原点,如图1,O (A) B此时a=0, AB = OB| =|b = a b ;当

20、A、b两点都不在原点时0b如图2,点A、B都在原点的右边如图3,点A、B都在原点的左边AB =|OB - OA=|b - aAB =|OB - OA =|b - aO Ab a = a-b ;-o aBA-b-(-a)=a - b ;*ba如图 4,点 a、b在原点的两边 AB| =|OA +OB| =|a + b =a+(b)=|a b综上,数轴上 a b两点之间的距离 AB =|a-b(2)回答下列问题:数轴上表示2和5两点之间的距离是,数轴上表示一2和一5的两点之间的距离数轴上表示1和-3的两点之间的距离是数轴上表示 x和1的两点 A和B之间的距离是 ,如果 AB = 2 ,那么x为;当

21、代数式 x+1+x2取最小值时,相应的 x的取值范围是 ;求x -1 +x2 +x3+|x1997的最小值。解:(1)数轴上表示2和5两点之间的距离是 3,数轴上表示2和一5的两点之间的距离是 3, 数轴上表示1和一3的两点之间的距离是 4;(2)数轴上表示 x和一1的两点A和B之间的距离是|x-(-1)|=|x + 1| ,如果AB = 2,即到一1距离为2的点,有2个分别是1、3,所以x为;1或3(3)当代数式 x+1 +x-2取最小值时,意味着: x点到1的距离与x点到2的距离之和最小,此时点 x应该在1与2之间,即相应的 x的取值范围是 1 x 2;(4)求x1 +|x 2+|x3 +

22、十x197的最小值,实际是找一个点 x使得该点到1、2、3.1997的距离之和最小,根据前面所讲,这时 x=999,问题转化为:1996ki11111111Ab1,A12 399919951997X求 2 (1+2+3+-998) =2父(1 + 998户998=9970022【2、利用数轴,绝对值化简】例11 知数a、b、c在数轴上的位置如图所示,化简 a +|b +|a + b - b -c的结果是()。A . 2a +3b -cB . 3b -c ILIC b+cD . c-ba 0b c解:由图知,a :0 :二 b :二 c ,且 |a 卜:|b|;|c|, | a 忖 b |, :

23、 a b ,则 a +b a0b : c, : b。c :二 0ab|lab|b-c = -ab ab L(b-c) = -ab a bb-c=3b -c例 12 已知 a 0, b c |a ,化简 a + c+|b + c a b + 2ac 解:: a 0 , b 0 时,: | c 四a | ,. c -a ,则 a +c0|b旧c|,_Jbc,则 b+c0|b旧a|, b0 a 0, 2a 0,又0 ,-c0,则 2a-c=2a+(-c) 0故 a+c + b+ c ab +2ac=a+c_b_c_a+b-2a +c = -2a+c当 c0时,丁 a0, a+c0b0 ,b +c0|

24、b旧a|, b0 a 0, 2a 0,又 c0, 一个负数与一个整数的和,无法判别2口|与|3的大小,故又需要分 3种情况讨论:当 21a |=|c|时,|2ac|=0故 a+c + b+ c- a- b +|2a-c = acbca+b = -2a2c当 2|a|c|时,有-2a -c,故 2ac0故 a+c +|b+c a b +2a c = cb ca+b2a+c = Ma -c当 2|a|c|时,有-2a 0故 a + c +|b + c - a -b + 2a-c = cbca+b+2ac = 3练习1、如图所示,根据数轴上给出的a、b、c的条件,试说明 a -b +|bcac的值与c无关解:由题知b :二a : 0 : c把握一条数轴上左边的数小于右边的数则 a -b 0,b -c : 0,a -c : 0故 a -b +|b -c - a -c = a -b +c -b +a -c =2a -2b小心去括号错误结果与C无关2、已知有理数a, b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论