导数高考题(含答案)_第1页
导数高考题(含答案)_第2页
导数高考题(含答案)_第3页
导数高考题(含答案)_第4页
导数高考题(含答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导数高考题1已知函数f(x)=x3+ax+,g(x)=lnx(i)当 a为何值时,x轴为曲线y=f(x)的切线;(ii)用min m,n 表示m,n中的最小值,设函数h(x)=min f(x),g(x)(x0),讨论h(x)零点的个数解:(i)f(x)=3x2+a,设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f(x0)=0,解得,a=因此当a=时,x轴为曲线y=f(x)的切线;(ii)当x(1,+)时,g(x)=lnx0,函数h(x)=min f(x),g(x)g(x)0,故h(x)在x(1,+)时无零点当x=1时,若a,则f(1)=a+0,h(x)=min f(1),g

2、(1)=g(1)=0,故x=1是函数h(x)的一个零点;若a,则f(1)=a+0,h(x)=min f(1),g(1)=f(1)0,故x=1不是函数h(x)的零点;当x(0,1)时,g(x)=lnx0,因此只考虑f(x)在(0,1)内的零点个数即可当a3或a0时,f(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,当a3时,函数f(x)在区间(0,1)内有一个零点,当a0时,函数f(x)在区间(0,1)内没有零点当3a0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=若0,即,则f(x)在(0,1)内无零点若=

3、0,即a=,则f(x)在(0,1)内有唯一零点若0,即,由f(0)=,f(1)=a+,当时,f(x)在(0,1)内有两个零点当3a时,f(x)在(0,1)内有一个零点综上可得:当或a时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点2设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x21,1,都有|f(x1)f(x2)|e1,求m的取值范围解:(1)证明:f(x)=m(emx1)+2x若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0若m0,则当x(,0

4、)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0所以,f(x)在(,0)时单调递减,在(0,+)单调递增(2)由(1)知,对任意的m,f(x)在1,0单调递减,在0,1单调递增,故f(x)在x=0处取得最小值所以对于任意x1,x21,1,|f(x1)f(x2)|e1的充要条件是即设函数g(t)=ette+1,则g(t)=et1当t0时,g(t)0;当t0时,g(t)0故g(t)在(,0)单调递减,在(0,+)单调递增又g(1)=0,g(1)=e1+2e0,故当t1,1时,g(t)0当m1,1时,g(m)0,g(m)0,即合式成立;当m1时,由g(t)的单调性,g(m)0,

5、即emme1当m1时,g(m)0,即em+me1综上,m的取值范围是1,13函数f(x)=ln(x+1)(a1)()讨论f(x)的单调性;()设a1=1,an+1=ln(an+1),证明:an解:()函数f(x)的定义域为(1,+),f(x)=,当1a2时,若x(1,a22a),则f(x)0,此时函数f(x)在(1,a22a)上是增函数,若x(a22a,0),则f(x)0,此时函数f(x)在(a22a,0)上是减函数,若x(0,+),则f(x)0,此时函数f(x)在(0,+)上是增函数当a=2时,f(x)0,此时函数f(x)在(1,+)上是增函数,当a2时,若x(1,0),则f(x)0,此时函

6、数f(x)在(1,0)上是增函数,若x(0,a22a),则f(x)0,此时函数f(x)在(0,a22a)上是减函数,若x(a22a,+),则f(x)0,此时函数f(x)在(a22a,+)上是增函数()由()知,当a=2时,此时函数f(x)在(1,+)上是增函数,当x(0,+)时,f(x)f(0)=0,即ln(x+1),(x0),又由()知,当a=3时,f(x)在(0,3)上是减函数,当x(0,3)时,f(x)f(0)=0,ln(x+1),下面用数学归纳法进行证明an成立,当n=1时,由已知,故结论成立假设当n=k时结论成立,即,则当n=k+1时,an+1=ln(an+1)ln(),an+1=l

7、n(an+1)ln(),即当n=k+1时,成立,综上由可知,对任何nN结论都成立4已知函数f(x)=exex2x()讨论f(x)的单调性;()设g(x)=f(2x)4bf(x),当x0时,g(x)0,求b的最大值;()已知1.41421.4143,估计ln2的近似值(精确到0.001)解:()由f(x)得f(x)=ex+ex2,即f(x)0,当且仅当ex=ex即x=0时,f(x)=0,函数f(x)在R上为增函数()g(x)=f(2x)4bf(x)=e2xe2x4b(exex)+(8b4)x,则g(x)=2e2x+e2x2b(ex+ex)+(4b2)=2(ex+ex)22b(ex+ex)+(4b

8、4)=2(ex+ex2)(ex+ex+22b)ex+ex2,ex+ex+24,当2b4,即b2时,g(x)0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,x0时,g(x)0,符合题意当b2时,若x满足2ex+ex2b2即,得,此时,g(x)0,又由g(0)=0知,当时,g(x)0,不符合题意综合、知,b2,得b的最大值为2()1.41421.4143,根据()中g(x)=e2xe2x4b(exex)+(8b4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得当b=2时,由g(x)0,得,从而;令,得2,当时,由g(x)0,得,得所以ln2的近似值

9、为0.6935设函数f(x)=aexlnx+,曲线y=f(x)在点(1,f(1)处得切线方程为y=e(x1)+2()求a、b;()证明:f(x)1解:()函数f(x)的定义域为(0,+),f(x)=+,由题意可得f(1)=2,f(1)=e,故a=1,b=2;()由()知,f(x)=exlnx+,f(x)1,exlnx+1,lnx,f(x)1等价于xlnxxex,设函数g(x)=xlnx,则g(x)=1+lnx,当x(0,)时,g(x)0;当x(,+)时,g(x)0故g(x)在(0,)上单调递减,在(,+)上单调递增,从而g(x)在(0,+)上的最小值为g()=设函数h(x)=xex,则h(x)

10、=ex(1x)当x(0,1)时,h(x)0;当x(1,+)时,h(x)0,故h(x)在(0,1)上单调递增,在(1,+)上单调递减,从而h(x)在(0,+)上的最大值为h(1)=综上,当x0时,g(x)h(x),即f(x)16已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2()求a,b,c,d的值;()若x2时,f(x)kg(x),求k的取值范围解:()由题意知f(0)=2,g(0)=2,f(0)=4,g(0)=4,而f(x)=2x+a,g(x)=ex(cx+d+c),故b=2,d=2,a=4

11、,d+c=4,从而a=4,b=2,c=2,d=2;()由(I)知,f(x)=x2+4x+2,g(x)=2ex(x+1),设F(x)=kg(x)f(x)=2kex(x+1)x24x2,则F(x)=2kex(x+2)2x4=2(x+2)(kex1),由题设得F(0)0,即k1,令F(x)=0,得x1=lnk,x2=2,若1ke2,则2x10,从而当x(2,x1)时,F(x)0,当x(x1,+)时,F(x)0,即F(x)在(2,x1)上减,在(x1,+)上是增,故F(x)在2,+)上的最小值为F(x1),而F(x1)=x1(x1+2)0,x2时F(x)0,即f(x)kg(x)恒成立若k=e2,则F(

12、x)=2e2(x+2)(exe2),从而当x(2,+)时,F(x)0,即F(x)在(2,+)上是增,而F(2)=0,故当x2时,F(x)0,即f(x)kg(x)恒成立若ke2时,F(x)2e2(x+2)(exe2),而F(2)=2ke2+20,所以当x2时,f(x)kg(x)不恒成立,综上,k的取值范围是1,e27已知函数f(x)=exln(x+m)()设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;()当m2时,证明f(x)0()解:,x=0是f(x)的极值点,解得m=1所以函数f(x)=exln(x+1),其定义域为(1,+)设g(x)=ex(x+1)1,则g(x)=ex(x+1

13、)+ex0,所以g(x)在(1,+)上为增函数,又g(0)=0,所以当x0时,g(x)0,即f(x)0;当1x0时,g(x)0,f(x)0所以f(x)在(1,0)上为减函数;在(0,+)上为增函数;()证明:当m2,x(m,+)时,ln(x+m)ln(x+2),故只需证明当m=2时f(x)0当m=2时,函数在(2,+)上为增函数,且f(1)0,f(0)0故f(x)=0在(2,+)上有唯一实数根x0,且x0(1,0)当x(2,x0)时,f(x)0,当x(x0,+)时,f(x)0,从而当x=x0时,f(x)取得最小值由f(x0)=0,得,ln(x0+2)=x0故f(x)=0综上,当m2时,f(x)

14、08已知函数(I)若x0时,f(x)0,求的最小值;(II)设数列an的通项an=1+解:(I)由已知,f(0)=0,f(x)=,f(0)=0欲使x0时,f(x)0恒成立,则f(x)在(0,+)上必为减函数,即在(0,+)上f(x)0恒成立,当0时,f(x)0在(0,+)上恒成立,为增函数,故不合题意,若0时,由f(x)0解得x,则当0x,f(x)0,所以当0x时,f(x)0,此时不合题意,若,则当x0时,f(x)0恒成立,此时f(x)在(0,+)上必为减函数,所以当x0时,f(x)0恒成立,综上,符合题意的的取值范围是,即的最小值为( II)令=,由(I)知,当x0时,f(x)0,即取x=,

15、则于是a2nan+=+=ln2nlnn=ln2,所以。9设函数f(x)=ax+cosx,x0,()讨论f(x)的单调性;()设f(x)1+sinx,求a的取值范围解:()求导函数,可得f'(x)=asinx,x0,sinx0,1;当a0时,f'(x)0恒成立,f(x)单调递减;当a1 时,f'(x)0恒成立,f(x)单调递增;当0a1时,由f'(x)=0得x1=arcsina,x2=arcsina当x0,x1时,sinxa,f'(x)0,f(x)单调递增当xx1,x2时,sinxa,f'(x)0,f(x)单调递减当xx2,时,sinxa,f

16、9;(x)0,f(x)单调递增; ()由f(x)1+sinx得f()1,a11,a令g(x)=sinx(0x),则g(x)=cosx当x时,g(x)0,当时,g(x)0,g(x)0,即(0x),当a时,有当0x时,cosx1,所以f(x)1+sinx;当时,=1+1+sinx综上,a10已知函数f(x)=+,曲线y=f(x)在点(1,f(1)处的切线方程为x+2y3=0()求a、b的值;()如果当x0,且x1时,f(x)+,求k的取值范围解:由题意f(1)=1,即切点坐标是(1,1),()由于直线x+2y3=0的斜率为,且过点(1,1),故,即解得a=1,b=1()由()知,所以)考虑函数(x

17、0),则(i)设k0,由知,当x1时,h(x)0而h(1)=0,故当x(0,1)时,h(x)0,可得;当x(1,+)时,h(x)0,可得h(x)0从而当x0,且x1时,f(x)(+)0,即f(x)+(ii)设0k1由于当x(1,)时,(k1)(x2+1)+2x0,故h(x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,与题设矛盾(iii)设k1此时h(x)0,而h(1)=0,故当x(1,+)时,h(x)0,可得h(x)0,与题设矛盾综合得,k的取值范围为(,011设函数f(x)=1ex()证明:当x1时,f(x);()设当x0时,f(x),求a的取值范围解:(1)当x1时,

18、f(x)当且仅当ex1+x,令g(x)=exx1,则g'(x)=ex1当x0时g'(x)0,g(x)在0,+)是增函数当x0时g'(x)0,g(x)在(,0是减函数于是g(x)在x=0处达到最小值,因而当xR时,g(x)g(0)时,即ex1+x,所以当x1时,f(x)(2)由题意x0,此时f(x)0当a0时,若x,则0,f(x)不成立;当a0时,令h(x)=axf(x)+f(x)x,则f(x)当且仅当h(x)0因为f(x)=1ex,所以h'(x)=af(x)+axf'(x)+f'(x)1=af(x)axf(x)+axf(x)(i)当0a时,由(1

19、)知x(x+1)f(x)h'(x)af(x)axf(x)+a(x+1)f(x)f(x)=(2a1)f(x)0,h(x)在0,+)是减函数,h(x)h(0)=0,即f(x)(ii)当a时,由(i)知xf(x)h'(x)=af(x)axf(x)+axf(x)af(x)axf(x)+af(x)f(x)=(2a1ax)f(x)当0x时,h'(x)0,所以h'(x)0,所以h(x)h(0)=0,即f(x)综上,a的取值范围是0,12已知函数f(x)=(x+1)lnxx+1()若xf(x)x2+ax+1,求a的取值范围;()证明:(x1)f(x)0解:(),xf(x)=xl

20、nx+1,题设xf(x)x2+ax+1等价于lnxxa令g(x)=lnxx,则,当0x1,g(x)0;当x1时,g(x)0,x=1是g(x)的最大值点,g(x)g(1)=1 综上,a的取值范围是1,+)()由()知,g(x)g(1)=1即lnxx+10当0x1时,f(x)=(x+1)lnxx+1=xlnx+(lnxx+1)0;当x1时,f(x)=lnx+(xlnxx+1)=0所以(x1)f(x)013设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1x2,()求a的取值范围,并讨论f(x)的单调性;()证明:f(x2)解:(I),令g(x)=2x2+2x+a,其对称轴为由题意知x1、x2是方程g(x)=0的两个均大于1的不相等的实根,其充要条件为,得(1)当x(1,x1)时,f'(x)0,f(x)在(1,x1)内为增函数;(2)当x(x1,x2)时,f'(x)0,f(x)在(x1,x2)内为减函数;(3)当x(x2,+)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论