版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上选修4-4坐标系与参数方程复习提纲 一、选考内容坐标系与参数方程高考考试大纲要求1坐标系: 理解坐标系的作用. 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别
2、.2 参数方程: 了解参数方程,了解参数的意义. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程. 了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用. 二、基础知识梳理1伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念:在平面内取一个定点,叫做极点;自极点引一条射线x叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.3点M的
3、极坐标:设M是平面内一点,极点与点M的距离叫做点M的极径,记为;以极轴x为始边,射线OM为终边的XOM叫做点M的极角,记为.有序数对叫做点M的极坐标,记为M. 极坐标与表示同一个点.极点O的坐标为.4.若,则,规定点与点关于极点对称,即与表示同一点. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.5极坐标与直角坐标的互化:6.圆的极坐标方程: 在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是 ; 在极坐标系中,以 (a>0)为圆心, a为半径的圆的极坐标方程是; 在极坐标系中,以 (a>0)为圆心,a为半径的圆的极坐标方程是;7.
4、直线的极坐标方程: 在极坐标系中,表示以极点为起点的一条射线;表示过极点的一条直线. 在极坐标系中,过点,且垂直于极轴的直线l的极坐标方程是.8参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标中x,y都是某个变数t的函数 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系x,y的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.9常见曲线的参数方程(1)圆的参数方程可表示为.(2)椭圆(a>b>0)的参数方程可表示为.(3)抛物线的参数方程可表示为.(4)经过点
5、,倾斜角为的直线l的参数方程可表示为(t为参数).10在建立曲线的参数方程时,要注明参数及参数的取值范围.在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.三、典型例题分析 考点1、极坐标与直角坐标互化例题1.1、在极坐标中,求两点之间的距离以及过它们的直线的极坐标方程. 例1.2、已知圆C:,则圆心C的极坐标为_答案:( )考点2、极坐标与直角坐标方程互化例题2.1、已知曲线的极坐标方程是以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,求曲线直角坐标方程. 解:曲线的极坐标方程可化为,其直角坐标方程为,即. 例2.2、设过原点的直线与圆:的一个交点为,点为线段
6、的中点.(1) 求圆C的极坐标方程;(2) 求点M轨迹的极坐标方程,并说明它是什么曲线解:(1)圆的极坐标方程为,(2)设点的极坐标为,点的极坐标为,点为线段的中点, ,将,代入圆的极坐标方程,得点轨迹的极坐标方程为,它表示圆心在点,半径为的圆.例2.3、在极坐标系中,求圆与直线的位置关系.考点3、参数方程与直角坐标方程互化例题3.1、已知曲线的参数方程为(为参数),曲线的极坐标方程为 (1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由解:(1)由得曲线的普通方程为,即,曲线的直角坐标方程为(2) 圆的圆
7、心为,圆的圆心为,两圆相交,设相交弦长为,因为两圆半径相等,所以公共弦平分线段,例3.2、在椭圆上找一点,写出椭圆的参数方程并在椭圆上找这一点到直线的距离的最小值解:设椭圆的参数方程为,当时,此时所求点为.例题3.3、已知直线经过点,倾斜角,写出直线的参数方程;设与圆相交与两点,求点到两点的距离之积. 解 :(1)直线的参数方程为,即 (2)把直线代入,得,则点到两点的距离之积为 例题3.4、求直线()被曲线所截的弦长.解:将方程,分别化为普通方程:,考点4:利用参数方程求值域例题4.1、已知点是圆上的动点,求的取值范围.例题4.2、在曲线:上求一点,使它到直线:的距离最小,并求出该点坐标和最
8、小距离.解:直线C2化成普通方程是x+y+2-1=0,设所求的点为P(1+cos,sin),则C到直线C2的距离d= =|sin(+)+2|,当时,即=时,d取最小值1此时,点P的坐标是(1-,-)四、基础练习1曲线C:(为参数)的普通方程为 ( )A、(x-1)2+(y+1)2=1 B 、(x+1)2+(y+1)2=1 C 、(x+1)2+(y-1)2=1 D 、(x-1)2+(y-1)2=12.在极坐标系中,圆心在且过极点的圆的方程为( )A. B. C. D.3.极坐标方程所表示的曲线是( )A两条相交直线 B圆 C椭圆 D双曲线4在极坐标系中,直线l的方程为,则点(2,)到直线l的距离
9、为 5.在平面直角坐标系中,直线的参数方程为,圆的参数方程为,则圆的圆心坐标为 ,圆心到直线的距离为 .6已知曲线的极坐标方程分别为(),则曲线与交点的极坐标为_ _.7.在极坐标系中,已知点(1,)和,则、两点间的距离是 8.在极坐标系中,直线()与圆交于、两点,则 9.在极坐标系中,圆与直线的位置关系是 10.在极坐标系中,圆上的点到直线 的距离的最小值是 _11.在极坐标系中,过点作圆的切线,则切线的极坐标方程是 12在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为,则直线的极坐标方程为_.13.已知圆的参数方程为(为参数), 则点与圆上的点的最远距离是 .14.在平面直角坐标系xOy中,点的直角坐标为.若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点的极坐标可以是 15.在极坐标系中,点到直线的距离为 16.已知直线与圆,则上各点到的距离的最小值为 .17.在极坐标系()中,过点作极轴的垂线,垂足为,则点的极坐标为 18.已知曲线C的参数方程为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋代持业务合同范本3篇
- 二零二五版电机维修智能化改造合同范本3篇
- 二零二五年度房地产经纪服务合同7篇
- 二零二五版购房借款及房地产开发商风险控制担保服务合同3篇
- 二零二五版商业地产买卖合同模板下载3篇
- 二零二五年度高等教育机构外国专家项目合作合同参考书3篇
- 二零二五版家用空调安装与室内环境改善合同3篇
- 二零二五年度成都上灶师父招聘与餐饮业人才服务合同2篇
- 展会创意展示合同(2篇)
- 2025年度油气田2#配电房土建安装与防爆电气设备合同3篇
- 下肢皮牵引护理PPT课件(19页PPT)
- 台资企业A股上市相关资料
- 电 梯 工 程 预 算 书
- 参会嘉宾签到表
- 机械车间员工绩效考核表
- 形式发票格式2 INVOICE
- 2.48低危胸痛患者后继治疗评估流程图
- 人力资源管理之绩效考核 一、什么是绩效 所谓绩效简单的讲就是对
- 山东省医院目录
- 云南地方本科高校部分基础研究
- 废品管理流程图
评论
0/150
提交评论