一种计算微波电路的并行算法_第1页
一种计算微波电路的并行算法_第2页
一种计算微波电路的并行算法_第3页
一种计算微波电路的并行算法_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    一种计算微波电路的并行算法FDTD-Diakoptics将复杂的微波电路分割为若干较为简单的子电路,使用有限时域差分方法(FDTD)独立求解每个子电路的时域特性,使用并行算法连接各子电路,最终得到整个电路的特性.本方法适用于结构复杂、规模较大的微波电路的分析设计,与整个电路使用FDTD进行设计研究的方法比较,本算法在保证相同数值精度的条件下可以提高计算效率五倍左右,故具有广泛的应用前景.关键词:时域Diakoptics;有限时域差分方法;Diakoptics;微波电路APFDTD-Diakoptics将复杂的微波电路分割为若干较为简单的子电路,使

2、用有限时域差分方法(FDTD)独立求解每个子电路的时域特性,使用并行算法连接各子电路,最终得到整个电路的特性.本方法适用于结构复杂、规模较大的微波电路的分析设计,与整个电路使用FDTD进行设计研究的方法比较,本算法在保证相同数值精度的条件下可以提高计算效率五倍左右,故具有广泛的应用前景.关键词:时域Diakoptics;有限时域差分方法;Diakoptics;微波电路A Parallel Algorithm for Microwave Circuit SimulationsSU Dong-linZHANG Qi-shangLU Shan-wei(Department of Electrical

3、 Engineering,Beijng University of Aeronautics and Astronautics,Beijing 100083,China)QIAN Yong-xiTatsuo Itoh(Department of ELectrical Engineering,University of California at Los Angeles,405 Hilgard Ave.,Los Angeles,CA 90095,USA)Abstract:In FDTD-Diakoptics,a complex microwave circuit is partitioned in

4、to several simple sub-circuits.Each sub-circuit is analyzed by finite-difference time-domain (FDTD) method independently,and a parallel algorithm is applied to cascade all the sub-circuits together.The method in this paper is particularly suitable to the analysis and design of the geometrically comp

5、lex structures and the electrically large circuits.With the same computational precision,the efficiency is improved approximately five times by using the proposed approach compared to the method using FDTD to analyze the circuit entirely.Therefore the method presented in this paper is very useful.Ke

6、ywords:time-domain Diakoptics;finite-difference time-domain (FDTD);Diakoptics;microwave circuits一、引言随着计算机技术的进步,有限时域差分方法(FDTD-Finite Difference Time Domain)可以研究的微波电路的越来越广泛,从无源电路到有源电路,从线性电路到非线性电路,从准TEM系统到色散系统,FDTD都已得到了成功的应用.但是,当电路的几何结构比较复杂,电路电尺寸较大时,不论是其所占用的计算机内存还是所需要的计算时间都是非常巨大的,甚至 在一些情况下即使耗费了计算时间还无法得

7、到需要的精度.例如,在分析波导膜片滤波器时,为正确模拟全部膜片的几何结构,FDTD栅网的网格尺寸选得非常小,从而导致描述整个波导滤波器的网格数量非常大.由于每两个膜片之间都是均匀波导传输线,使用与膜片相同的栅网显然是不必要的.人们曾使用非均匀FDTD栅网的办法解决这个问题,当栅网的大小相差比较大时,不但收敛性不易控制,而且仍无法确保节省计算时间.将Diakoptics思想运用于微波电路的全波分析,通过将电路分割为若干独立的部分,根据每部分的具体结构采用不同的网格,独立地对各个部分进行全波时域分析,由于每部分的网格是均匀的,因而容易保证算法的收敛性.二、Diakoptics的概念Diakopti

8、cs定义为:将一个电路分解为若干个较为简单的子电路,独立计算子电路的特性,通过连接条件将子电路耦合连接.线性电路理论中子电路的特性用冲击响应函数表示;子电路间的耦合通过串行和并行两种算法完成.串行算法是从电路首尾中的任一端开始向另一端连接,依次将从参考面看入的子电路视为前一级子电路的负载,求出等效的子电路的输入特性,并将此输入特性看成更前一级子电路的负载,串行算法思路比较简单,易于编写计算机程序,但存在的问题是:当电路中某一个子电路需要调整时,在该子电路之后连接的部分都要从新连接,而且所有的连接计算在时间及空间上只能顺序进行,计算效率较低;并行算法可以从电路中的任何位置开始,同时计算若干个彼此

9、相邻的子电路的连接,且对某个子电路特性的调整并不影响其它子电路的连接,特别是当某个子电路的特性需要反复调整时,对其余子电路的连接计算只需进行一次.研究微波电路问题时,若微波电路可以被等效为一个线性网络的话,则可以设想描述微波电路特性的格林函数可对应于电路理论中的冲击响应函数.从电磁场理论角度看,时域格林函数g(r,t;r0,t0)为位于r0点的点源t0时刻施加的单位冲击信号在观察点r及t时刻的场,且满足方程(1)两个微波子电路连接时,其连接参考面上存在着复杂的耦合关系,这种耦合关系可以用电磁波在存在两个不连续界面的媒质中反射和透射现象来形象描述,如图1所示.那么如何将Diakoptics算法应

10、用于微波电路特性分析中呢?在介绍这一点之前,本文首先简要介绍Diakoptics算法的数学描述.图1媒质中反射和透射现象可以用来形象描述两个微波子电路间的耦合关系三、Diakoptics算法的数学描述以两个二端口网络的串、并行连接给出Diakoptics算法的数学描述.图2假设两个子电路的反射及透射波的冲击响应函数分别为:gr1(t),gr2(t),gt1(t),gt2(t)和hr1(t),hr2(t),ht1(t),ht2(t),上标“r”表示反射波,“t”表示传输波,下标1表示从输入参考面对电路作激励,下标2表示从输出参考面对电路作激励.设f为两个子电路连接后电路的冲击响应函数.使用串行算

11、法,从f网络输入参考面看入的冲击响应为:fr1(t)=gr1(t)+gt2(t)*hr1(t)*gt1(t)+gt2(t)*hr1(t)*gr2(t)*hr1(t)*gt1(t)+gt2(t)*(hr1(t)*gr2(t)n*hr1(t)*gt1(t)+;(2)使用并行算法,从f电路的输入端口看入的冲击响应函数fr1(t),ft2(t)以及从f电路的输出端口看入的冲击响应函数fr2(t),ft1(t)分别为:fr1(t)=gr1(t)+gt2(t)*hr1(t)*gt1(t)+gt2(t)*hr1(t)*gr2(t)*hr1(t)*gt1(t)+gt2(t)*(hr1(t)*gr2(t)n*hr1(t)*gt1(t)+ft2(t)=gt2(t)*hr2(t)+gt2(t)*hr1(t)*gr2(t)*ht2(t)+gr2(t)*(hr1(t)*gr2(t)n*hr2(t)+(3)fr2(t)=hr2(t)+ht1(t)*gr2(t)*ht2(t)+ht1(t)*gr2(t)*hr1(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论