下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面一、基础过关1下列命题:书桌面是平面;有一个平面的长是50 m,宽是20 m;平面是绝对的平、无厚度,可以无限延展的抽象数学概念其中正确命题的个数为()A1个 B2个 C3个 D0个2下列图形中,不一定是平面图形的是()A三角形 B菱形C梯形 D四边相等的四边形3空间中,可以确定一个平面的条件是()A两条直线 B一点和一条直线C一个三角形 D三个点4已知平面与平面、都相交,则这三个平面可能的交线有()A1条或2条 B2条或3条C1条或3条 D1条或2条或3条5给出以下命题:和一条直线都相交的两条直线在同一平面
2、内;三条两两相交的直线在同一平面内;有三个不同公共点的两个平面重合;两两平行的三条直线确定三个平面其中正确命题的个数是_6已知m,a,b,abA,则直线m与A的位置关系用集合符号表示为_7如图,梯形ABDC中,ABCD,ABCD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由8空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点二、能力提升9空间不共线的四点,可以确定平面的个数是()A0 B1C1或4 D无法确定10已知、为平面,A、B、M、N为点,a为直线,下列推理错误的是()AAa,A,Ba,BaBM,M,N,NMNCA,AA
3、DA、B、M,A、B、M,且A、B、M不共线、重合11下列四个命题:两个相交平面有不在同一直线上的三个公共点;经过空间任意三点有且只有一个平面;过两平行直线有且只有一个平面;在空间两两相交的三条直线必共面其中正确命题的序号是_12. 如图所示,四边形ABCD中,已知ABCD,AB,BC,DC,AD(或延长线)分别与平面相交于E,F,G,H,求证:E,F,G,H必在同一直线上三、探究与拓展13. 如图,在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面答案1A
4、2.D3.C4.D506Am7. 解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于ABCD,则分别延长AC和BD交于点E,如图所示EAC,AC平面SAC,E平面SAC.同理,可证E平面SBD.点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线8证明l1,l2,l1Dl2,l1、l2交于一点,记交点为P.Pl1,Pl2,Pl3,l1,l2,l3交于一点9C10.C1112证明因为ABCD,所以AB,CD确定平面AC,ADH,因为H平面AC,H,由公理3可知,H必在平面AC与平面的交线上同理F、G、E都在平面AC与平面的交线上,因此E,F,G,H必在同一直线上13证明(1)C1、O、M平面BDC1,又C1、O、M平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第32讲锐角三角函数及其应用(讲义)(原卷版)
- 624届二模化学试题答案
- 2019年高考历史人民版一轮复习练案7辛亥革命
- 高中英语人教版必修3Unit4Astronomythescienceofthestarsperiod5测试(学生版)
- 安全教育主题班会教案
- MTP管理培训闫高峰老师-20211101100801
- 2023-2024学年全国小学四年级上英语人教版期中试卷(含答案解析)
- 第1章-非平衡态热力学4
- 2024年沈阳经营性道路旅客运输驾驶员从业资格考试题库
- 2024年酒店会务合同协议书
- 中国的时尚与时尚产业
- 炊事基础理论知识
- 颅内占位性的病变护理查房课件
- 山东省烟台市芝罘区(五四制)2023-2024学年九年级上学期期末考试物理试题
- 女职工权益维护知识讲座
- DB14∕T 1851-2019 中华鼢鼠防治技术规程
- 2024年风电铸件行业市场研究报告
- 初中英语教学中的情景教学方法
- 中耳胆脂瘤的护理查房
- 高空作业安全防护措施与操作规程
- 财务科廉洁风险点及防控措施【15篇】
评论
0/150
提交评论