版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1181勾股定理时勾股定理时第1页/共43页勾股定理:勾股定理:直角三角形两直角边的平直角三角形两直角边的平方和等于斜边的平方方和等于斜边的平方活 动 1abcABC如果在如果在Rt ABC中,中,C=90,那么那么222.abc第2页/共43页c2 = a2 + b2abcABC第3页/共43页 有一种特殊的直角三角形有一种特殊的直角三角形,已知一边可以求另外两边长,已知一边可以求另外两边长ACBbac45ACBbac30 a:b:c=1:1:2 a:b:c=1:3:2a= 5 cm时求b=?c=?c= 6 cm时求b=?a=?第4页/共43页勾股小常识:勾股数勾股小常识:勾股数 1、
2、 基本勾股数如:基本勾股数如:大家一定要熟记大家一定要熟记 2、如果、如果a,b,c是一组勾股数,则是一组勾股数,则ka、kb、kc(k为正为正整数)也是一组勾股数,整数)也是一组勾股数, 如:如:6、8、10 ; 9、12、1510、24、26 ; 15、36、39112、 、13 2、 、3 4 5、5 12 13、 、7 24 25、 、第5页/共43页(1)求出下列直角三角形中未知的边)求出下列直角三角形中未知的边610ACB8A15CB练练 习习302245回答回答:在解决上述问题时,每个直角三角形需知道几个条件?在解决上述问题时,每个直角三角形需知道几个条件?直角三角形哪条边最长?
3、直角三角形哪条边最长?第6页/共43页(2)在长方形)在长方形ABCD中,宽中,宽AB为为1m,长,长BC为为2m ,求,求AC长长1 m2 mACBD2222125ACABBC在在Rt ABC中,中,B=90,由勾股定理可知:由勾股定理可知:第7页/共43页活 动 2问题问题(1)在长方形)在长方形ABCD中中AB、BC、AC大小关系?大小关系?ACBDABBCAC222ACABBC第8页/共43页活 动 2(2)一个门框尺寸如下图所示)一个门框尺寸如下图所示若有一块长若有一块长3米,宽米,宽0.8米的薄木板,问怎样从门框通过?米的薄木板,问怎样从门框通过?若薄木板长若薄木板长3米,宽米,宽
4、1.5米呢?米呢?若薄木板长若薄木板长3米,宽米,宽2.2米呢?为什么?米呢?为什么?ABC1 m2 m木板的宽木板的宽2.2米大于米大于1米,米, 横着不能从门框通过;横着不能从门框通过;木板的宽木板的宽2.2米大于米大于2米,米,竖着也不能从门框通过竖着也不能从门框通过 只能试试斜着能否通过,只能试试斜着能否通过,对角线对角线AC的长最大,因此需的长最大,因此需要求出要求出AC的长,怎样求呢?的长,怎样求呢?第9页/共43页(3)有一个边长为)有一个边长为50dm 的正方形洞口,的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径想用一个圆盖去盖住这个洞口,圆的直径至少多长?(结果保留整数)
5、至少多长?(结果保留整数)50dmABCD22225050500071()ACABBCdm 解:解:在在Rt ABC中,中,B=90, AC=BC=50,由勾股定理可知:由勾股定理可知:第10页/共43页活 动 3(1)如图,池塘边有两点)如图,池塘边有两点A、B,点,点C是与是与BA方方向成直角的向成直角的AC方向上的一点,测得方向上的一点,测得CB= 60m,AC= 20m ,你能求出,你能求出A、B两点间的距离吗?两点间的距离吗? (结果保留整数)结果保留整数)第11页/共43页活 动 3(2)变式:以上题为背景,请同学们再设计其)变式:以上题为背景,请同学们再设计其他方案构造直角三角形
6、(或其他几何图形),他方案构造直角三角形(或其他几何图形),测量池塘的长测量池塘的长AB 第12页/共43页例1:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0。4m吗? ABC DE解:在RtABC中, ACB=90 AC2+ BC2AB2 2.42+ BC22.52 BC0.7m由题意得:DEAB2.5mDCACAD2.40.42m在RtDCE中,BE1.50.70.8m0.4m答;梯子底端答;梯子底端B不是外移不是外移0.4m DCE=90 DC2+ CE2DE2 22+ BC22.52 CE1.5m第13页
7、/共43页练习练习:如图,一个如图,一个3米长的梯子米长的梯子AB,斜着靠在,斜着靠在竖直的墙竖直的墙AO上,这时上,这时AO的距离为的距离为2.5米米求梯子的底端求梯子的底端B距墙角距墙角O多少米?多少米?如果梯子的顶端如果梯子的顶端A沿墙角下滑沿墙角下滑0.5米至米至C,请同学们请同学们:猜一猜,底端也将滑动猜一猜,底端也将滑动0.5米吗?米吗?算一算,底端滑动的距离近似值算一算,底端滑动的距离近似值是多少是多少? (结果保留两位小数)(结果保留两位小数)第14页/共43页例例2:如图,铁路上如图,铁路上A,B两点相距两点相距25km,C,D为两庄,为两庄,DAAB于于A,CBAB于于B,
8、已知,已知DA=15km,CB=10km,现在要在铁路现在要在铁路AB上建一个土特产品收购站上建一个土特产品收购站E,使得,使得C,D两村到两村到E站的距离相等,则站的距离相等,则E站应建在离站应建在离A站多少站多少km处?处?CAEBDx25-x解:解:设设AE= x km,根据勾股定理,得根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2又又 DE=CE AD2+AE2= BC2+BE2即:即:152+x2=102+(25-x)2答:答:E站应建在离站应建在离A站站10km处。处。 X=10则则 BE=(25-x)km1510第15页/共43页例例3:在我国古代数学著作在我国
9、古代数学著作九章算术九章算术中记载了一道有趣的问题中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为这个问题意思是:有一个水池,水面是一个边长为10尺的正方形尺的正方形,在水池的中央有一根新生的芦苇,它高出水面在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?度和这根芦苇的长度各是多少?DABC解解:设水池的深度设水池的深度AC为为X米米,则芦苇高则芦苇高AD为为 (X+1)米米.根据题意得根据题意得:BC2+AC2=A
10、B252+X2 =(X+1)225+X2=X2+2X+1 X=12 X+1=12+1=13(米)答答:水池的深度为水池的深度为12米米,芦苇高为芦苇高为13米米.第16页/共43页ABCDFE解解:设设DE为为X,X(8- X)则则CE为为 (8 X).由题意可知由题意可知:EF=DE=X,XAF=AD=1010108 B=90 AB2+ BF2AF282+ BF2102 BF6CFBCBF106464 C=90 CE2+CF2EF2(8 X)2+42=X264 16X+X2+16=X280 16X=016X=80X=5第17页/共43页例5: 如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿
11、着正方体的外表面爬到顶点B的最短距离是( ). (A)3 (B ) 5 (C)2 (D)1ABABC21分析: 由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).B第18页/共43页活 动 3(3)如图,分别以)如图,分别以Rt ABC三边为三边为边向外作三个正方形,其面积分别用边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出表示,容易得出S1、S2、S3之间有的关系式为之间有的关系式为 123SSS第19页/共43页活 动 3(3)变式:你还能求出)变式:你还能求出S1、S2、S3之间之间的关系式吗?的关系式吗?S1S2S3第20页/共43页活 动 4(1)
12、这节课你有什么收获?)这节课你有什么收获? (2)作业)作业教材第教材第78 页习题第页习题第2、3、4、5题题教材第教材第79页习题第页习题第12题题第21页/共43页补充练习及书后部分习题补充练习及书后部分习题第22页/共43页1在在RtABC中中, C=90,(1)已知已知: a=5, b=12, 求求c;(2)已知已知: b=6, c=10 , 求求a;(3)已知已知: a=7, c=25, 求求b;(4)已知已知: a=7, c=8, 求求b 2 一直角三角形的一直角边长为一直角三角形的一直角边长为7, 另两条另两条边长为两个连续整数,求这个直角三角形的边长为两个连续整数,求这个直角
13、三角形的周长周长第23页/共43页3如图,受台风如图,受台风“麦莎麦莎”影响,一棵树在影响,一棵树在离地面离地面4米处断裂,树的顶部落在离树跟底米处断裂,树的顶部落在离树跟底部部3米处,这棵树折断前有多高?米处,这棵树折断前有多高?应用知识回归生活应用知识回归生活4米米3米米第24页/共43页4.一架一架5长的梯子,斜立靠在一竖直的墙长的梯子,斜立靠在一竖直的墙上,这是梯子下端距离墙的底端上,这是梯子下端距离墙的底端3,若梯子,若梯子顶端下滑了顶端下滑了1,则梯子底端将外移(则梯子底端将外移( )5.如图,要在高如图,要在高3m,斜坡斜坡5m的楼梯表面铺的楼梯表面铺地毯,地毯的长度至少需(地毯
14、,地毯的长度至少需( )米)米6.把直角三角形两条直角边把直角三角形两条直角边同时扩大到原来的同时扩大到原来的3倍,则其倍,则其斜边(斜边( )A.不变不变 B.扩大到原来的扩大到原来的3倍倍C.扩大到原来的扩大到原来的9倍倍 D.减小到原来的减小到原来的1/3ABC17B第25页/共43页7如图如图:是一个长方形零件图,根据所给的是一个长方形零件图,根据所给的尺寸尺寸,求两孔中心求两孔中心A、B之间的距离之间的距离ABC409016040应用知识回归生活应用知识回归生活第26页/共43页 8小明妈妈买了一部小明妈妈买了一部29英寸(英寸(74厘米)的电视机厘米)的电视机小明量了电视机的屏幕,
15、发现屏幕只有小明量了电视机的屏幕,发现屏幕只有58厘米长厘米长和和46厘米宽他觉得一定是售货员搞错了厘米宽他觉得一定是售货员搞错了,你同意他你同意他的想法吗?你能解释这是为什么吗?的想法吗?你能解释这是为什么吗?应用知识回归生活应用知识回归生活第27页/共43页9/在平静的湖面上,有一支红莲,高出水面在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为离为2米,问这里水深是米,问这里水深是_m。 第28页/共43页10小明想知道学校旗杆的高,他发现旗杆顶端的绳子小明想知道学校旗
16、杆的高,他发现旗杆顶端的绳子垂到地面还多垂到地面还多1米,当他把绳子的下端拉开米,当他把绳子的下端拉开5米后,米后,发现下端刚好接触地面,求旗杆的高度。发现下端刚好接触地面,求旗杆的高度。第29页/共43页11.小东拿着一根长竹竿进一个宽为小东拿着一根长竹竿进一个宽为3米的城门,米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城他先横着拿不进去,又竖起来拿,结果竹竿比城门高门高1米,当他把竹竿斜着时,两端刚好顶着城米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少米?门的对角,问竹竿长多少米?解解:设竹竿长设竹竿长X米米,则城门高为则城门高为 (X1)米米.根据题意得根据题意得:32
17、+ (X1) 2 =X29+X2 2X+1=X210 2X=02X=10X=5答答:竹竿长竹竿长5米米第30页/共43页12.有一个小朋友拿着一根竹竿要通过一个长方形的有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出门,如果把竹竿竖放就比门高出1尺,斜放就恰尺,斜放就恰好等于门的对角线,已知门宽好等于门的对角线,已知门宽4尺,求竹竿高与尺,求竹竿高与门高门高.解解:设竹竿高设竹竿高X尺尺,则门高为则门高为 (X1)尺尺.根据题意得根据题意得:42+ (X1) 2 =X216+X2 2X+1=X217 2X=02X=17X=8.5答答:竹竿高竹竿高8.5尺尺,门高为门高为
18、7.5尺尺.第31页/共43页13在一棵树的在一棵树的10米高处有两只猴子,一只米高处有两只猴子,一只猴子爬下树走到离树猴子爬下树走到离树20米处的池塘的米处的池塘的A处。处。另一只爬到树顶另一只爬到树顶D后直接跃到后直接跃到A处,距离以处,距离以直线计算,如果两只猴子所经过的距离相等直线计算,如果两只猴子所经过的距离相等,则这棵树高,则这棵树高_米。米。 15第32页/共43页ABCDEF14.如右图将矩形如右图将矩形ABCD沿直线沿直线AE折叠折叠,顶点顶点D恰好落在恰好落在BC边上边上F处处,已知已知CE=3,AB=8,则则BF=_。15.如图,有一个直角三角形纸片,两直如图,有一个直角
19、三角形纸片,两直直角边直角边AC=6cm,BC=8cm,现将直角边现将直角边AC沿沿CAB的的角平分线角平分线AD折叠,使它落在斜边折叠,使它落在斜边AB上,且上,且与与AE重合,你能求出重合,你能求出CD的长吗?的长吗?AECDB第33页/共43页16.一只蚂蚁从长为一只蚂蚁从长为4cm、宽为、宽为3 cm,高是,高是5 cm的的长方体纸箱的长方体纸箱的A点沿纸箱爬到点沿纸箱爬到B点,那么点,那么它所行的最短路线的长是它所行的最短路线的长是_cm。AB第34页/共43页17.如图,是一个三级台阶,它的每一级的长、宽、如图,是一个三级台阶,它的每一级的长、宽、高分别为高分别为20dm、3dm、2dm,A和和B是这个台阶是这个台阶两个相对的端点,两个相对的端点,A点有一只蚂蚁,想到点有一只蚂蚁,想到B点去点去吃可口的食物,则蚂蚁沿着台阶面爬到吃可口的食物,则蚂蚁沿着台阶面爬到B点的最点的最短路程是短路程是_ ?3?2?20?B?A第35页/共43页18.如图,一个圆柱形纸筒的底面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度祁菊离婚赡养费及财产分配合同
- 二零二四年新建道路工程承包合同
- 二零二四年度餐饮服务合同:餐厅与顾客之间的餐饮服务协议
- 2024年度市场调研与分析服务合同范本
- 合同期间与其他单位、部门的综合协调方案
- 2024年度租赁合同:含员工食堂与停车场使用的办公场所
- 二零二四年度广告代理合同协议书
- 2024年度茶楼装修项目管理合同
- 2024年度商标许可合同with标的:品牌商标使用2篇
- 2024年度租赁协议:单间出租房租赁押金退还合同
- 实验室试剂管理培训
- 超星尔雅学习通《中国近现代史纲要(首都师范大学)》2024章节测试答案
- 新部编版九年级语文下册《词四首》导学案
- 油库设计与管理(山东联盟)智慧树知到期末考试答案2024年
- (2024年)小学体育多媒体课件
- 小学科普教育现状调查分析
- 物资设备盘点报告(模版)
- 核化学与放射化学智慧树知到期末考试答案2024年
- 国家安全概论智慧树知到期末考试答案2024年
- 护理职业规划大赛
- 煤矿复工复产培训课件
评论
0/150
提交评论