高三数学必考知识点总结【五篇】_第1页
高三数学必考知识点总结【五篇】_第2页
高三数学必考知识点总结【五篇】_第3页
高三数学必考知识点总结【五篇】_第4页
高三数学必考知识点总结【五篇】_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高三数学必考知识点总结【五篇】 学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个方程式知识点,这样也方便同学们日后的复习。下面就是给大家带来的高三数学知识点,希望能帮助到大家! 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°<180° 2、直线的斜率 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 注意下面四点: (

2、1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90° (2)k与p1、p2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 3、直线方程 点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 a(1)=a,a(n)为公差为r的等差数列 通项公式: a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(

3、n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r 那么,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r. 通项公式也成立。 因此,由归纳法知,等差数列的通项公式是正确的。 求和公式: s(n)=a(1)+a(2)+.+a(n) =a+(a+r)+.+a+(n-1)r =na+r1+2+.+(n-1) =na+n(n-1)r/2 同样,可用归纳法证明求和公式。 a(1)=a,a(n)为公比为r(r不等于0)的等比数列 通

4、项公式: a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1). 可用归纳法证明等比数列的通项公式。 求和公式: s(n)=a(1)+a(2)+.+a(n) =a+ar+.+ar(n-1) =a1+r+.+r(n-1) r不等于1时, s(n)=a1-rn/1-r r=1时, s(n)=na. 同样,可用归纳法证明求和公式。 1.函数的奇偶性 (1)假设f(x)是偶函数,那么f(x)=f(-x); (2)假设f(x)是奇函数,0在其定义域内,那么f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)

5、7;f(-x)=0或(f(x)0); (4)假设所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:假设的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;假设fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原那么。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意

6、点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然; (3)曲线c1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线c2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线c1:f(x,y)=0关于点(a,b)的对称曲线c2方程为:f(2a-x,2b-y)=0; (5)假设函数y=f(x)对xr时,f(a+x)=f(a-x)恒成立,那么y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性

7、 (1)y=f(x)对xr时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,那么y=f(x)是周期为2a的周期函数; (2)假设y=f(x)是偶函数,其图像又关于直线x=a对称,那么f(x)是周期为2a的周期函数; (3)假设y=f(x)奇函数,其图像又关于直线x=a对称,那么f(x)是周期为4a的周期函数; (4)假设y=f(x)关于点(a,0),(b,0)对称,那么f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,那么函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xr时,f(x+a)=-f(x)(或f(x

8、+a)=,那么y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解kd(d为f(x)的值域); 6.af(x)恒成立af(x)max,;af(x)恒成立af(x)min; 7.(1)(a>0,a1,b>0,nr+); (2)logan=(a>0,a1,b>0,b1); (3)logab的符号由口诀“同正异负”记忆; (4)alogan=n(a>0,a1,n>0); 8.判断对应是否为映射时,抓住两点: (1)a中元素必须都有象且; (2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象; 9.能熟练地用定义证明函数的单调性,求反函数,判断

9、函数的奇偶性。 10.对于反函数,应掌握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为a,值域为b,那么有ff-1(x)=x(xb),f-1f(x)=x(xa); 11.处理二次函数的问题勿忘数形结合 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性 利用一次函数在区间上的保号性可解决求一类参

10、数的范围问题; 13.恒成立问题的处理方法 (1)别离参数法; (2)转化为一元二次方程的根的分布列不等式(组)求解; 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为根本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律-充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1

11、)根据定义-证明两平面没有公共点; (2)判定定理-证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”; (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (5)夹在两个平行平面间的平行线段相等; (6)经过平面外一点只有一个平面和平面平行。 一、函数的定义域的常用求法: 1、分式的分母不等于零; 2

12、、偶次方根的被开方数大于等于零; 3、对数的真数大于零; 4、指数函数和对数函数的底数大于零且不等于1; 5、三角函数正切函数y=tanx中xk+/2; 6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。 二、函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 三、函数的值域的常用求法: 1、换元法; 2、配方法; 3、判别式法; 4、几何法; 5、不等式法; 6、单调性法; 7、直接法 四、函数的最值的常用求法: 1、配方法; 2、换元法; 3、不等式法; 4、几何法; 5、单调性法 五、函数单调性的常

13、用结论: 1、假设f(x),g(x)均为某区间上的增(减)函数,那么f(x)+g(x)在这个区间上也为增(减)函数。 2、假设f(x)为增(减)函数,那么-f(x)为减(增)函数。 3、假设f(x)与g(x)的单调性相同,那么fg(x)是增函数;假设f(x)与g(x)的单调性不同,那么fg(x)是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比拟大小、求值域、求最值、解不等式、证不等式、作函数图象。 六、函数奇偶性的常用结论: 1、如果一个奇函数在x=0处有定义,那么f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,那么f(x)=0(反之不成立)。 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数y=f(u)和u=g(x)复合而成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论