高一数学知识点5篇总结_第1页
高一数学知识点5篇总结_第2页
高一数学知识点5篇总结_第3页
高一数学知识点5篇总结_第4页
高一数学知识点5篇总结_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、202x最新高一数学知识点5篇总结 (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,那么必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,那么指数函数单调递增;a小于1大于0,那么为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某

2、一个方向上无限趋向于x轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x

3、)既不是奇函数又不是偶函数,称为非奇非偶函数。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,那么x(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,那么x=1/(xk),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,那么a可以是任意实数; 排除了为0这种可能,即对于x<0

4、和x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,那么函数的定义域为大于0的所有实数; 如果a为负数,那么x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,那么x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,那么函数的定义域为不等于0的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,那么只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。

5、由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)显然幂函数无界。 定义: x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。 范围: 倾斜角的取值范围是0°<180

6、°。 理解: (1)注意“两个方向”:直线向上的方向、x轴的正方向; (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。 意义: 直线的倾斜角,表达了直线对x轴正向的倾斜程度; 在平面直角坐标系中,每一条直线都有一个确定的倾斜角; 倾斜角相同,未必表示同一条直线。 公式: k=tan k>0时(0°,90°) k<0时(90°,180°) k=0时=0° 当=90°时k不存在 ax+by+c=0(a0)倾斜角为a, 那么tana=-a/b, a=arctan(-a/b) 当a0时, 倾斜角为90度,即与x轴垂

7、直 反比例函数 形如y=k/x(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当k>0时,反比例函数图像经过一,三象限,是减函数 当k<0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相

8、交。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x,假设在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.在应用条件时,易a忽略是空集的情况 3.你会用补集的思想解决有关问题吗? 4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? 5.你知道“否命题”与“命题的否认

9、形式”的区别. 6.求解与函数有关的问题易忽略定义域优先的原那么. 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称. 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域. 9.原函数在区间-a,a上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:. 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示. 12.求函数的值域必须先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比拟

10、函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种根本应用你掌握了吗? 14.解对数函数问题时,你注意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需讨论 15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。假设原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”. 19.

11、绝对值不等式的解法及其几何意义是什么? 20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的考前须知是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为根底,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是”. 22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示. 23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0. 24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗? 25.在“,求”的问题中,你在利用公式时注

12、意到了吗?(时,应有)需要验证,有些题目通项是分段函数。 26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在? 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。) 28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 29.正角、负角、零角、象限角的概念你清楚吗?,假设角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗? 30.三角函数的定义及单

13、位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗? 32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次) 33.反正弦、反余弦、反正切函数的取值范围分别是 34.你还记得某些特殊角的三角函数值吗? 35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写标准,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗? 36.函数的图象的平移,方程的平移以及点的平移公式易混: (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论