


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高斯程序应用1、用 HyperChem 程序画分子图:2、设置工作环境:3、格式转化:4、分子构型进行优化:5、优化结果:Entering Link 1 = F:G94Wl1.exe PID=5732.Copyright (c) 1988,1990,1992,1993,1995 Gaussian, Inc.All Rights Reserved.This is part of the Gaussian 94(TM) system of programs. It is based on the the Gaussian 92(TM) system (copyright 1992 Gaussian
2、, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally
3、 registered trademark of Gaussian, Inc.This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license.The following legend is applicable only to US Government contracts under DFARS:RESTRICTED RIGHTS LEGENDUse, duplication or d
4、isclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.Gaussian, Inc.Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US
5、Government contracts under FAR:RESTRICTED RIGHTS LEGENDUse, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19.Gaussian, Inc.Carnegie Office Park, Building 6, Pit
6、tsburgh, PA 15106 USAWarning - This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor ofGaussian, Inc. access to this program. By
7、 using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any
8、manner prohibited above.Cite this work as:Gaussian 94, Revision E.1,M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill,B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith,G. A. Petersson, J. A. Montgomery, K. Raghavachari,M. A. Al-Laham, V . G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cio
9、slowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart,M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA
10、, 1995.*Gaussian 94: x86-Win32-G94RevE.1 23-Nov-199612-Jan-1911# HF/6-31G* opt1/18=20,38=1/1,3;2/9=110,12=2,17=6,18=5/2;3/5=1,6=6,7=1,11=9,25=1,30=1/1,2,3;4/1;5/5=2,38=4/2;6/7=2,8=2,9=2,10=2,28=1/1;7/1,2,3,16;1/3(1);99/99;2/9=110/2;3/5=1,6=6,7=1,11=9,25=1,30=1/1,2,3;4/5=5,16=2/1;5/5=2,38=4/2;7/1,2,3
11、,16;1/3(-5);2/9=110/2;3/5=1,6=6,7=1,11=9,25=1,30=1,39=1/1,3;6/7=2,8=2,9=2,10=2,28=1/1;99/9=1/99;溴乙烷Symbolic Z-matrix:Charge = 0 Multiplicity = 1C1R2H1R32A3H1R42A43D4H1R52A53D5H2R61A63D6H2R71A76D7Br2R81A86D8Variables:R21.54CR31.09021R41.0887R51.08951R61.08926R71.08998R81.90999A3109.44878A4109.47688A5
12、109.46169A6109.46629A7109.45294A8109.48196D4119.98722D5-119.95934D6180.D7-120.00764D8120.0251GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradBerny optimization.Initialization pass.Initial Parameters! (Angstroms and Degrees) ! Name DefinitionValueDerivative Info.! R1R(2,1)! R2
13、R(3,1)1.541.0902estimate D2E/DX2estimate D2E/DX2! R3R(4,1)1.0887estimate D2E/DX2! R4R(5,1)1.0895estimate D2E/DX2! R5R(6,2)1.0893estimate D2E/DX2! R6R(7,2)1.09estimate D2E/DX2! R7R(8,2)1.91estimate D2E/DX2! A1A(2,1,3)109.4488estimate D2E/DX2! A2A(2,1,4)109.4769estimate D2E/DX2! A3A(3,1,4)109.4692esti
14、mate D2E/DX2! A4A(2,1,5)109.4617estimate D2E/DX2! A5A(3,1,5)109.454estimate D2E/DX2! A6A(4,1,5)109.5168estimate D2E/DX2! A7A(1,2,6)109.4663estimate D2E/DX2! A8A(1,2,7)109.4529estimate D2E/DX2! A9A(6,2,7)109.4891estimate D2E/DX2! A10A(1,2,8)109.482estimate D2E/DX2! A11A(6,2,8)109.4888estimate D2E/DX2
15、! A12A(7,2,8)109.4483estimate D2E/DX2! D1D(6,2,1,3)180.estimate D2E/DX2! D2D(6,2,1,4)-60.0128estimate D2E/DX2! D3D(6,2,1,5)60.0407estimate D2E/DX2! D4D(7,2,1,3)59.9924estimate D2E/DX2! D5D(7,2,1,4)179.9796estimate D2E/DX2! D6D(7,2,1,5)-59.967estimate D2E/DX2! D7D(8,2,1,3)-59.9749estimate D2E/DX2! D8
16、D(8,2,1,4)60.0123estimate D2E/DX2! D9D(8,2,1,5)-179.9342estimate D2E/DX2Trust Radius=3.00E-01 FncErr=1.00E-07 GrdErr=1.00E-07Number of steps in this run= 38 maximum allowed number of steps= 100.GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradInput orientation:Center Atomic Co
17、ordinates (Angstroms)NumberNumberXYZ16.000000.000000.00000026.000000.0000001.540000311.028000.000000-.36300041-.513000-.889000-.36300051-.513000.890000-.36300061-1.027000.0000001.90300071.514000.8900001.903000835.901000-1.5590002.177000Distance matrix (angstroms):123451C.0000002C1.540000.0000003H1.0
18、902082.162913.0000004H1.0886962.1621511.779045.0000005H1.0895132.1625631.7795451.779000.0000006H2.1624381.0892653.0590492.4878252.4881827H2.1628001.0899842.4881823.0584842.4878688Br2.8251751.9099872.9829872.9832693.8011316786H.0000007H1.779545.0000008Br2.4945422.494483.000000Stoichiometry C2H5BrFram
19、ework group C1X(C2H5Br)Deg. of freedom 18Full point groupC1NOp 1Largest Abelian subgroupC1NOp 1Largest concise Abelian subgroup C1NOp 1Standard orientation:Center Atomic Coordinates (Angstroms)NumberNumberXYZ162.030997-.412589-.00027726.972900.706353-.000078311.906732-1.029852.889722411.907587-1.028
20、727-.889323513.026799.029468.000862611.0968011.323272-.889211711.0965751.322742.890334835-.773082-.067985-.000007Rotational constants (GHZ): 29.3438475 3.9517548 3.6429341 Isotopes: C-12,C-12,H-1,H-1,H-1,H-1,H-1,Br-79Standard basis: 6-31G(d) (6D, 7F)There are70 symmetry adapted basis functions of A
21、symmetry.Crude estimate of integral set expansion from redundant integrals=1.000.Integral buffers will be262144 words long.Raffenetti 1 integral format.Two-electron integral symmetry is turned on.70 basis functions159 primitive gaussiansOne-electron integrals computed using PRISM.The smallest eigenv
22、alue of the overlap matrix is 7.525E-04Projected Huckel Guess.Requested convergence on RMS density matrix=1.00E-08 within 64 cycles.Requested convergence on MAX density matrix=1.00E-06.Keep R1 integrals in memory in canonical form, NReq=3539693.SCF Done: E(RHF) = -2648.A.U. after 12 cyclesConvg = .8
23、524E-08 -V/T = 2.0044S*2 = .0000Population analysis using the SCF density.*Alpha occ. eigenvalues - -490.04914 -64.46166 -58.60077 -58.59914 -58.59910Alpha occ. eigenvalues -11.29046-11.23426-9.71054-7.45967-7.45113Alpha occ. eigenvalues -7.45111-3.19833-3.19429-3.19426-3.18453Alpha occ. eigenvalues
24、 -3.18452-1.08739-.96290-.83390-.64578Alpha occ. eigenvalues -.60301-.54189-.52701-.48544-.39510Alpha occ. eigenvalues -.39308Alpha virt. eigenvalues -.17698.24323.28738.29005.30991Alpha virt. eigenvalues -.31954.35739.44717.61234.62712Alpha virt. eigenvalues -.65202.65917.66089.70967.71388Alpha vir
25、t. eigenvalues -.76450.78048.78965.92592.99895Alpha virt. eigenvalues -1.033991.086861.128941.159191.20615Alpha virt. eigenvalues -1.206691.228911.397861.713881.79893Alpha virt. eigenvalues -1.850171.857192.206282.290562.29307Alpha virt. eigenvalues -2.491832.592152.616112.632962.90748Alpha virt. ei
26、genvalues -4.533574.767289.2907074.52302Condensed to atoms (all electrons):1234561C5.138115.321177.393378.393424.380688-.0390532C.3211775.076072-.039341-.039324-.035600.3892943H.393378-.039341.511455-.024109-.024809.0040094H.393424-.039324-.024109.510942-.024763-.0031195H.380688-.035600-.024809-.024
27、763.533244-.0015136H-.039053.389294.004009-.003119-.001513.5122127H-.039061.389311-.003123.004011-.001516-.0285628Br-.070727.249840-.001158-.001137.005223-.042313781C-.039061-.0707272C.389311.2498403H-.003123-.0011584H.004011-.0011375H-.001516.0052236 H-.028562 -.0423137 H .512422 -.0423788 Br -.042
28、378 35.068049Total atomic charges:11 C-.4779392 C-.3114283 H.1837004 H.1840765 H.1690476 H.2090467 H.2088978 Br -.165399Sum of Mulliken charges=.00000Atomic charges with hydrogens summed into heavy atoms:11 C.0588842 C.1065143 H.0000004 H.0000005 H.0000006 H.0000007 H.0000008 Br -.165399Sum of Mulli
29、ken charges=.00000Electronic spatial extent (au): <R*2>=367.2118Charge= .0000 electronsDipole moment (Debye):X=2.0317Y=.6943Z=-.0006 Tot=2.1470Quadrupole moment (Debye-Ang):XX=-30.5790YY=-31.7552ZZ=-32.1859XY=1.4457XZ=-.0017YZ=.0003Octapole moment (Debye-Ang*2):XXX=-23.7168YYY=-.6367ZZZ=-.0030
30、 XYY=-6.7467XXY=-.8659XXZ=-.0019XZZ=-6.2893 YZZ=.0207YYZ=-.0025XYZ=.0016Hexadecapole moment (Debye-Ang*3):XXXX=-331.1145 YYYY=-80.8655 ZZZZ=-48.1126 XXXY=9.3743XXXZ=-.0039 YYYX=3.9950 YYYZ=-.0014 ZZZX=-.0076ZZZY=.0031 XXYY=-69.7921 XXZZ=-65.5588 YYZZ=-19.2657XXYZ=.0049 YYXZ=-.0053 ZZXY=.9953N-N= 1.3
31、715E+02 E-N=-6.3999E+03 KE= 2.8870E+03* Axes restored to original set *NumberNumberXYZ16.002104167-.001821425.00971400726-.0 .0-.031-.006221215-.000166638-.00136694241.002736678.004496246-.00171076851.001460846-.002639859-.00027055361.009275313-.003132271.00305510671-.002203171-.009968359.0028715568
32、35.005993455-.0 .0Cartesian Forces: Max.0 RMS.008845518InternalForces: Max.0 RMS.005530593CenterAtomicForces (Hartrees/Bohr)GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradBerny optimization.Search for a local minimum.Step number 1 out of a maximum of 38All quantities printed
33、 in internal units (Hartrees-Bohrs-Radians)Second derivative matrix not updated - first step.Eigenvalues -.00237.05719.05720.05724.05977Eigenvalues -.16000.16000.16000.16000.16000Eigenvalues -.21729.22462.28519.34789.34815Eigenvalues -.34869.34898Eigenvalues -Eigenvalues -RFO step: Lambda=-4.0117777
34、7E-03.Linear search not attempted - first point.03565943 RMS(Int)=.00108938.00102140 RMS(Int)=.00046899.00003522 RMS(Int)=.00046809.00000072 RMS(Int)=.00046812Iteration 1 RMS(Cart)=Iteration 2 RMS(Cart)=Iteration 3 RMS(Cart)=Iteration 4 RMS(Cart)=VariableOld X-DE/DXDelta XDelta XDelta XNew X(Linear)
35、(Quad)(Total)R12.91018-.00637.00000-.02201-.022012.88817R22.06019-.00541.00000-.01538-.015382.04482R32.05734-.00439.00000-.01242-.012422.04492R42.05888-.00275.00000-.00781-.007812.05107R52.05841-.00773.00000-.02189-.021892.03652R62.05977-.00822.00000-.02335-.023352.03642R73.60935.01470.00000.06642.0
36、66423.67577A11.91024.00399.00000.02524.025011.93526A21.91073.00397.00000.02491.024701.93543TrRot=.000000 .000000 .000000 .000000.000000 .000000A31.91060-.00357.00000-.01849-.018921.89168A41.91047.00027.00000.00000-.000011.91046A51.91033-.00230.00000-.01548-.015491.89484A61.91143-.00235.00000-.01616-
37、.016171.89526A71.91055.00565.00000.04070.039681.95022A81.91031.00565.00000.04091.039871.95019A91.91094-.00437.00000-.01274-.014271.89667A101.91082.01081.00000.04175.041211.95203A111.91094-.00890.00000-.05571-.056241.85470A121.91023-.00884.00000-.05489-.055441.85479D13.14159.00056.00000.01320.013363.
38、15496D2-1.04742.00105.00000.02125.02163-1.02579D31.04791.00077.00000.01672.016991.06490D41.04706-.00101.00000-.02115-.021531.02553D53.14124-.00052.00000-.01311-.013263.12798D6-1.04662-.00080.00000-.01763-.01790-1.06452D7-1.04676-.00026.00000-.00451-.00463-1.05139D81.04741.00023.00000.00353.003641.05
39、105D9-3.14044-.00004.00000-.00100-.00100-3.14145ItemValueThresholdConverged?Maximum Force.014698.000450NORMSForce.005531.000300NOMaximum Displacement.128604.001800NORMSDisplacement.035380.001200NOPredicted change in Energy=-1.956001E-03GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
40、GradGradInput orientation:CenterNumberAtomicNumberCoordinates (Angstroms)XYZ16-.5984991.036343-1.70384426-.5991901.037505-.17549331.4126631.040307-2.08908841-1.107170.162459-2.08930351-1.1099091.922397-2.06636261-1.6002491.020217.22322971-.0838191.895833.223192835.303251-.525523.549824Distance matri
41、x (angstroms):1 2 3 4 51 C.0000002 C1.528352.0000003H1.0820712.164648.0000004H1.0821262.1648131.755138.0000005H1.0853812.1492451.7597801.760089.0000006H2.1719521.0776813.0657832.5152882.5093017H2.1718861.0776292.5149673.0658552.5091098Br2.8864501.9451333.0704483.0704383.8514626786H.0000007H1.751075.
42、0000008Br2.4737192.473757.000000Stoichiometry C2H5BrFramework group C1X(C2H5Br)Deg. of freedom 18Full point groupC1NOp 1Largest Abelian subgroupC1NOp1Largest concise Abelian subgroup C1NOp 1Standard orientation:Center Atomic Coordinates (Angstroms)NumberNumberXYZ162.077628-.397041-.000029261.001779.
43、688504-.000021311.992713-1.024234.877636411.992621-1.024585-.877502513.059048.066495.000103611.0654251.313572-.875598711.0655291.313583.875477835-.790051-.068389.000005Rotational constants (GHZ): 30.4189855 3.7850182 3.5110405 Isotopes: C-12,C-12,H-1,H-1,H-1,H-1,H-1,Br-79Standard basis: 6-31G(d) (6D
44、, 7F)There are70 symmetry adapted basis functions of A symmetry.Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be262144 words long.Raffenetti 1 integral format.Two-electron integral symmetry is turned on.70 basis functions159 primitive gaussians26 alph
45、a electrons 26 beta electronsnuclear repulsion energy 164.68 Hartrees.One-electron integrals computed using PRISM.The smallest eigenvalue of the overlap matrix is 7.531E-04Initial guess read from the read-write file:Requested convergence on RMS density matrix=1.00E-08 within 64 cycles.Requested conv
46、ergence on MAX density matrix=1.00E-06.Keep R1 integrals in memory in canonical form, NReq=3539693.SCF Done: E(RHF) = -2648. A.U. after 11 cyclesConvg = .5538E-08 -V/T = 2.0044S*2 = .0000* Axes restored to original set *Center Atomic Forces (Hartrees/Bohr)NumberNumberXYZ16.001019963-.001744182.00648
47、315826-.004278681.007318323-.00863831831.000619787.000142937-.00026271441-.000434893-.000410229-.00024580051-.000393956.000626894.00021769061-.000068799-.001689109.00047123771.001519735-.000758820.000488572835.002016845-.003485814.001486175Cartesian Forces: Max.008638318 RMS.003018813Internal Forces
48、: Max.006190907 RMS.001534081GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradBerny optimization.Search for a local minimum.Step number 2 out of a maximum of 38All quantities printed in internal units (Hartrees-Bohrs-Radians)Update second derivatives using information from points 1 2Trust test= 1.15E+00 RLast= 1.47E-01 DXMaxT set to 4.24E-01Eigenvalues -.00237.05112.05352.05470.05621Eigenvalues -.15308.16000.16000.16000.16218Eigenvalues -.19296.23190.28413.34789.34846Eigenvalues -.34871.34943Eigenvalues -Eigenvalues -RFO step: Lambda=-3.E-04.Quartic line
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8《网络新世界》(教学设计)-部编版道德与法治四年级上册001
- 全陪导游知识培训课件
- 第17课《陌生人来访》教学设计-2024-2025学年生命安全教育三年级武汉版
- 第25课《周亚夫军细柳》教学设计-2023-2024学年统编版语文八年级上册
- 小学防森林防火主题班会课
- 第一单元图文处理与编排第4课四、完善与展示作品 教学设计 2023-2024学年人教版初中信息技术七年级上册
- 清华版(2024)五年级上册 2.2 恰当运用控制器-探索输入输出功能模块教学设计
- 六年级信息技术上册 旅游计划书教学实录 浙江摄影版
- 第10课《小石潭记》教学设计 2024-2025学年统编版语文八年级下册
- 2023四年级数学下册 5 分数的意义和性质 1分数的意义1.4 用直线上的点表示分数教学实录 冀教版
- 欧诗漫TMIC:2023国人面部美白消费趋势白皮书
- 4流体压强 电子教案
- 2023-2024学年浙江省临海市小学语文六年级下册期末模考试题
- MT/T 199-1996煤矿用液压钻车通用技术条件
- GB/T 33939-2017立式辊磨机磨辊与磨盘铸造衬板技术条件
- 设备润滑管理基础知识培训教材
- 资本论第二卷讲义课件
- 班组班前安全教育记录表
- 胎儿颈项透明层(NT)的超声诊断课件
- 工程移交单(标准样本)
- 《最好的未来》合唱曲谱
评论
0/150
提交评论