人教高一数学期末各篇知识点总结_第1页
人教高一数学期末各篇知识点总结_第2页
人教高一数学期末各篇知识点总结_第3页
人教高一数学期末各篇知识点总结_第4页
人教高一数学期末各篇知识点总结_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学必修一知识系统汇总第一章 集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(3) 元素的无序性: 如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2) 集合的表示方法:列举法与描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:a,b,c2)

2、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xÎR| x-3>2 ,x| x-3>23) 语言描述法:例:不是直角三角形的三角形4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元

3、素相同则两集合相等”即: 任何一个集合是它本身的子集。AÍA;真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作AB(或BA)如果 AÍB, BÍC ,那么 AÍC 如果AÍB 同时 BÍA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由

4、所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=A A=AAB=BAAB ABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=U A (CuA)= 二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对

5、应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题

6、中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致 (两点必须同时具备) (见课本21页相关例2)2值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法A、描点法 B、图象变换法常用

7、变换方法有三种: 平移变换 伸缩变换 对称变换4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间(3)区间的数轴表示5映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:AB来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数 (1)在

8、定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 二函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2

9、时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(指出函数f(x)在给定的区间D上的单调性)(B)图象法(

10、从图象上看升降)(C)复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称利用定义判断函数奇偶性的步骤:首先确定函数

11、的定义域,并判断其是否关于原点对称;确定f(x)与f(x)的关系;作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数注意:函数定义域关于原点对称是函数具有奇偶性的必要条件首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时

12、,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待定系数法3) 换元法4) 消参法10函数最大(小)值(定义见课本p36页) 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1根式的概念:

13、一般地,如果,那么叫做的次方根,其中>1,且*u 负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,当是偶数时,2分数指数幂正数的分数指数幂的意义,规定:,u 0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1)·;(2);(3)(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a>10<a<1定义域 R定义域 R值域y0值域y0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,

14、1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在a,b上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1对数的概念:一般地,如果,那么数叫做以为底的对数,记作:( 底数, 真数, 对数式)说明: 注意底数的限制,且; ; 注意对数的书写格式两个重要对数: 常用对数:以10为底的对数; 自然对数:以无理数为底的对数的对数u 指数式与对数式的互化 N b(二)对数的运算性质如果,且,那么: ·; ; 注意:换底公式(,且;,且;)利用换底公式推导下面的结论(1);(2)(三)对数函数1、对数函数的概念:函

15、数,且叫做对数函数,其中是自变量,函数的定义域是(0,+)注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数 对数函数对底数的限制:,且2、对数函数的性质:a>10<a<1定义域x0定义域x0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(四)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函

16、数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数(1),方程有两不等实根,二次函数的图象与轴有两

17、个交点,二次函数有两个零点(2),方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(3),方程无实根,二次函数的图象与轴无交点,二次函数无零点数学必修三知识系统汇总第一章 算法初步一、算法与程序框图1.算法:算法指的是用阿拉伯数字进行算术运算的过程。在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。算法通常可以编成计算机程序,让计算机执行并解决问题。2.算法与计算机:计算机解决任何问题都要依赖于算法。只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。3.算法的特征:有限性:一个

18、算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。确定性:算法中的每一步应该是确定的,并且能有效地执行且得到确定的结果。可行性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一个都准确无误才能完成问题。不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以由不同的算法。普遍性:一个算法应该适用于求某一类问题的解,而不是只用来解决一个具体的问题。【注意:有限性、确定性和可行性是算法特征里最重要的特征,是检验一个算法的主要依据。】4.程序框图:程序框图又称流程图,是一种用程序框、流程线及文

19、字说明来表示算法的图形。5.程序框图的组成:程序框图由程序框及流程线组成;在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序。6.基本程序框及其功能:图形符号名 称功 能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处表明“是”或“Y”;不成立时表明“否”或“N”流程线连接程序框连接点连接程序框图的两部分【注意:起、止框是任何流程不可少的,表明程序的开始和结束。输入和输出可用在算法中任何需要输入、输出的位置。算法中间要处理数据或

20、计算,可分别写在不同的处理框内。一个算法步骤到另一个算法步骤用流程线连接。如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码。】7.程序框图的画法:画一个算法的程序框图,应先对问题进行算法分析,必要时可先用自然语言设计该问题的算法,弄清算法的流程,然后把算法步骤逐个转化为框图表示,最后用流程线依步骤顺序连接成程序框图。画程序框图的规则:使用标准的框图符号;框图一般按从上到下、从左到右的方向画;除判断框外,大多数框图符号只有一个进入点和退出点,判断框是具有超过一个退出点的唯一符号;一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种公式多分支判断,有几种不同的结果

21、。在图形符号内描述的语言要非常简练清楚。8.算法的基本逻辑结构:顺序结构:顺序结构是由若干个依次执行的步骤组成的,其特点是步骤与步骤之间,框与框之间是按从上到下的顺序依次执行,不会引起程序步骤的“跳转”,它是任何一个算法都离不开的基本结构。条件结构:概念:在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,这种先根据条件作出判断,再决定执行哪一种操作的结构称为条件结构。这是一种依据指定条件选择执行不同指令的指控结构。结构形式满足条件?否 是步骤B步骤A步骤A满足条件?否 是循环结构:概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就

22、是循环结构,反复执行的步骤称为循环体。结构形式循环体满足条件?否 是满足条件?循环体是 否.直到型循环的结构特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环。.当型循环的结构特征:在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环。第二章 统计一、随机抽样1.简单随机抽样:一般地,设一个总体含有个个体,从中逐个不放回地抽取个个体作为样本,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。2.简单随机抽样的特点:被抽取样本的总体个数较少;从总体中逐个地抽取;不放回抽取;每一次抽取时,总

23、体中各个个体被抽到的可能性相同,在整个抽样过程中各个个体被抽到的机会也都相等(即等可能性)。从而保证了抽样方法的公平性。3.两种简单随机抽样方法:抽签法(抓阄法);随机数法4.抽签法(抓阄法)步骤:一般地,抽签法就是把总体中的个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取次,就得到一个容量为的样本。【上述步骤可简写为:编号;制签:大小相同,形状一样,质地均匀;抽签:不透明容器,均匀搅拌;依号取样。】5.随机数法步骤:编号;随机确定开始数字;从选定的数开始读数;根据号码得到样本。6.随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

24、7.系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样。8.系统抽样的特点:适用于总体容量较大的情况;由于抽样的间隔相等,因此系统抽样也称作等距抽样。在进行大规模的抽样调查时,系统抽样比简单随机抽样要方便;不放回抽样;等可能抽样。9.系统抽样步骤:一般地,假设要从容量为的总体中抽取容量为的样本,可以按下列步骤进行系统抽样:先将总体的个个体编号;确定分段间隔,对编号进行分段。当(是样本容量)是整数时,取;在第一段用简单随机抽样确定一个个体编号;按照一定的规则抽取样本。通常是将加上间隔得到第2个个体编号,再加得到第3个个体

25、编号,依次进行下去,直到获取整个样本。10.分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。11.分层抽样的特点:适用于总体由差异明显的几部分组成的情况;更充分的反映了总体的情况;等可能性抽样,每个个体被抽到的可能性都是。12.三种抽样方法的比较:类 别共 同 点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的可能性相等从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽

26、样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成二、用样本估计总体1.两种估计方式:用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征。2.分析数据的两种基本方法:作图【作图可以达到两个目的:从数据中提取信息;利用图形传递信息。】画表格【画表格可以达到的目的是:通过改变数据的构成形式,为我们提供解释数据的新方式】。3.频率分布直方图:在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各小长方形的面积表示。各小长方形的面积的总和等于1【】。直方图能够很容易地表示大量数据,非常直观地表明分布的形状,是我们能够看到在分布表中看不清楚的数

27、据模式。但直方图也丢失了一些信息,如原始数据不能在图中表示出来。4.频率分布折线图:连结频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。随着样本容量的增加,作图时所分的组数也增加,相应的频率分布折线图就会越来越接近于一条光滑曲线,统计中称之为总体密度曲线,它能够更加精确地反映出总体在各个范围内取值的百分比。5.茎叶图:当样本数据较少时,用茎叶图表示数据的效果较好。它不但可以保留原始数据,而且能够展示数据的分布情况,给数据的记录和表示都带来了方便。6.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。7.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或最中间两个

28、数据的平均数)叫做这组数据的中位数。8.平均数:如果有个数,那么叫做这个数的平均数。总体中所有个体的平均数叫做总体平均数;样本中所有个体的平均数叫做样本平均数。【任何一个样本数据的改变都会引起平均数的改变,平均数可以反映出更多关于样本数据全体的信息。】9.用频率分布直方图估计中位数和平均数:在频率分布直方图中,中位数左边和右边的直方图的面积相等;平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和。10.标准差:考察样本数据的分散程度的大小,最常用的统计量是标准差。标准差是样本数据到平均数的一种平均距离,一般用表示。11.方差:从数学的角度考虑,有时用标准差的平方方

29、差代替标准差,作为测量样本数据分散程度的工具。12.补充:标准分:【是个人成绩;是整体平均分;是标准差。】在、中,为事件多发区;为事故必发区。三、变量间的相关关系1.相关关系:与函数关系不同,相关关系是一种非确定性关系。2.正相关与负相关:从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系成为正相关;点散布在从左上角到右下角的区域内,两个变量的相关关系成为负相关。3.回归直线:从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线。4.回归直线方程:回归直线方程为。其中:是回归方程的斜率;是截距。 5.

30、回归方法:由一个变量的变化去推测另一个变量的变化的方法称为回归方法。6.最小二乘法:通过求的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫最小二乘法。第三章 概率一、随机事件的概率1.必然事件:一般地,我们把在条件下,一定会发生的事件,叫做相对于条件的必然事件,简称必然事件。2.不可能事件:在条件下,一定不会发生的事件,叫做相对于条件的不可能事件,简称不可能事件。3.确定事件:必然事件与不可能事件统称为相对于条件的确定事件,简称确定事件。4.随机事件:在条件下可能发生也可能不发生的事件,叫做相对于条件的随机事件,简称随机事件。5.事件:确定事件和随

31、机事件统称为事件。一般用大写字母表示。6.频数与频率:在相同条件下重复次试验,观察某一事件是否出现,称次试验中事件出现的次数为事件出现的频数,称事件出现的比例为事件出现的频率。【由于发生的次数至少为0,至多为,因此频率总在0与1之间,即】7.概率:一般地,在次重复进行的试验中,事件发生的频率,当很大时,总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这是就把这个常数叫做事件的概率,记作。注意:频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率;频率本身是随机的,在试验前是不能确定的;概率是一个确定的常数,是客观存在的,与试验的次数无关。二、概率的意义1.概率的正确理解:随机事件

32、在一次试验中发生与否是随机的,具有偶然性,但当试验次数增大时,必然性的一面就表现出来了,这个必然性就是频率的稳定性。2.游戏的公平性:随机事件在一次试验中发生与否是随机的,当大量重复这一过程时,随机中又含有着规律,因此利用概率知识可以判断一些游戏规则是否公平、公正。3.决策中的概率思想:知道时间的概率可以为人们作决策提供依据,概率是用来度量事件发生的可能性大小的量,小概率事件很少发生,而大概率事件则经常发生,利用概率思想进行决策时,极大似然估计法(简称极大似然法)【极大似然法:若面临从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称

33、为极大似然法。】是重要的统计思想方法之一。4.天气预报的概率:概率天气预报是用概率值表示预报某种天气现象出现可能性的大小,它所提供的不是某种天气现象的“有”或“无”,某种气象要素值的“大”或“小”,而是天气现象出现的可能性有多大。三、概率的基本性质1.事件的关系与运算:对于事件与事件,如果事件发生,则事件一定发生,这时称事件包含事件(或称事件包含于事件),记作。如果事件发生,那么事件一定发生,反过来也对,这时我们说这两个事件相等,记作。一般地,若,那么称事件与事件相等,记作。若某事件发生当且仅当事件发生或事件发生,则称此事件为事件与事件的并事件(或和事件),记作。若某事件发生当且仅当事件发生且

34、事件发生,则称此事件为事件与事件的交事件(或积事件),记作。若为不可能事件,那么称事件与事件互斥,其含义是:事件与事件在任何一次试验中不会同时发生。若为不可能事件,为必然事件,那么称事件与事件互为对立事件,其含义是:事件与事件在任何一次试验中有且仅有一个发生。即。2.概率的几个基本性质概率的取值范围:.必然事件的概率为1,不可能事件的概率为0.记作当事件A与事件B互斥时,发生的频数等于A发生的频数与B发生的频数之和,从而的频率.由此得到概率的加法公式:特例:若与为对立事件,则.【注意:这里的常用表示】如果为互斥事件,那么如果,不是互斥事件,则四、古典概型1.基本事件:在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件成为基本事件。2.基本事件的特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。3.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型:试验中有可能出现的基本事件只有有限个每个基本事件出现的可能性相等古典概型的概率公式:【注意:求古典概型概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论