



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§32独立性检验的基本思想及其应用(1)【学情分析】 :在实际的问题中,经常会面临需要推断的问题,比如研制一种新药,需要推断此药是否有效?有人怀疑吸烟的人更容易患肺癌,那么吸烟是否与患肺癌有关呢?等等。在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的分析推断. 在本节的学习中,通过案例分析,使学生学会用假设检验的思想方法解决对于两个分类变量是否有关系的判断问题,并理解统计思维与确定性思维的差异。【教学目标】 :( 1)知识与技能: 理解分类变量的含义;会根据收集的数据列出2× 2 列联表,并会阅读三维柱形图和二
2、维条形图,并粗略判断两个分类变量是否有关系;理解假设检验思想,会利用独立性检验精确判断两个分类变量是否有关系;( 2)过程与方法: 利用学生身边熟悉的问题引入分类变量是否相关的问题;运用统计学解决问题的一般思路引导学生;让学生经历假设检验思想的形成及运用过程,领会分析、总结的方法;( 3)情感态度与价值观: 通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣; 在合作讨论中学会交流与合作,启迪思维,提高创新能力; 通过实际问题的解决和从不同角度对问题的解决,可提高学生应用数学能力。【教学重点】 :理解独立性检验的基本思想及实施步骤。【教学难点】 :. ( 1)了解独立性检验的基本思想
3、;( 2)了解随机变量K 2 的含义,K 2 太大认为两个分类变量是有关系的。【教学过程设计】 :教学环节教学活动一、问题引1.介绍分类变量的概念: 变量的不同”值”表示个体所属的不同类别,入如性别变量男女, 是否吸烟 , 宗教信仰 , 国籍等 .2.在日常生活中, 我们关心两个分类变量之间是否有关系, 如 : 吸烟是否与患肺癌有关?引例为调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:设计意图为探索新知识做准备 .不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965二、探究新知教师引导 : 统计学中一般采取什么方式手段研究分
4、析解决问题统计学的方法进行分析判断?学生探究 :?如何运用鼓励学生自己寻找研究问题的一般统计学的方法1. 利用频率分布表判断;不患肺癌患肺癌总计不吸烟99.46%0.54%1吸烟97.72%2.28%1由患肺癌在吸烟者与不吸烟者中的频率差异可粗略估计吸烟对患肺癌有影响 ;2. 利用统计图直观判断(1) 通过三维柱形图判断两个分类变量是否有关系:80007000600050004000系列13000系列220001000S20S112由图中能清晰看出各个频数的相对大小,由患肺癌在吸烟者与不吸烟者中的相对频数差异可粗略估计吸烟对患肺癌有影响;(2) 通过二维条形图判断两个分类变量是否有关系:作出患
5、肺癌在吸烟者与不吸烟者中的的频率条形图10.90.80.7患肺癌0.6比例0.50.40.30.2不患肺癌0.1比例0吸烟不吸烟不吸烟吸烟由图中可看出 , 吸烟者中患肺癌的比例高于不吸烟者中患肺癌的比例, 可估计吸烟对患肺癌有影响 .通过图表的方法,使学生巩固统计学中一般研究问题的基本思路。教师引导 : 上面通过分析数据和图形, 得到的直观印象是吸烟和患肺癌有关 , 那么事实是否如此呢 ?并且能够以多大的把握认为”吸烟与患肺癌有关” ?能否用统计学观点进一步考察这个问题.师生共同探究:为研究的一般性, 在列联表中用字母代替数字不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+
6、b+c+d师: 若假设吸烟与患肺癌两个变量没有关系, 则应得到什么结论?生: 在吸烟者中患肺癌的比例约等于不吸烟者中患肺癌的比例, 即a/a+b c/c+da(c+d) c(a+b)ad -bc 0师: 若计算 ad bc 的结果 , 由此可以初步得出什么结论?生: ad bc越小 , 说明吸烟与患肺癌之间关系越弱; ad bc越大 , 说明吸烟与患肺癌之间关系越强.师: 为使不同的样本容量的数据有统一的评判标准, 可构造一个随机变量K 2n(adbc)2其中 n a b cd 为样本容量(a b)(c d)(a c)(b d )若假设成立, K 2应该很小 ;若 K 2很大 , 说明假设不成
7、立 , 即两变量有关系 . 利用上述公式,可计算出问题中的K 2 的观测值为9965 7775494222099k2148987456.632781791同学们肯定会提出同一问题:那么这个值是不是很大?怎样才算很大?在假设成立的情况下,统计学家估算出如下的概率:利用独立事件同时发生的概率公式启发学生做出假设P(K 26.635)0.01现在的观测值 56.632 远大于 6.635,即假设成立的概率为0.01 ,是小概率事件,也就是假设不合理的程度约为99%,因此可以下结论:有99%的把握认为“吸烟与患肺癌有关系”。这就是两个分类变量独立性检验的基本思想, 可以表述为: 当 K2n(ad bc
8、) 2很大时, 就(ab)(c d )(a c)(bd)认为两个变量有关系;否则就认为没有充分的证据显示两个变量有关系。师:类比反证法的原理,你能否总结出独立性检验的基本步骤?生:( 1)假设两个分类变量 X 与 Y 无关系;(2)计算出 K 2 的观测值 K 2n( ad bc)2;(a b)(c d )(a c)(bd )(3)把 k 的值与临界值比较确定X 与 Y 有关的程度或无关。采用类比的方法,便于学生理解假设检验的思想三、形成方方法总结:培养学生归纳的能法要推断“ X 与 Y 有关系”成立的可能性的方法:1、通过三维柱形图和二维条形图粗略判断两个分类变量是否有关系,(1) ad -
9、bc ( 2) a/a+b c/c+d力2、利用独立性检验精确判断两个分类变量是否有关系(1)假设无关( 2)求 k 值( 3)下结论四、练习巩固1、在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上两个柱形高度的乘积相差越大,两个变量有关系的可能性就(A)A越大B越小C无关系D无法确定巩固知识,培养技能 .2、对于 2×2 列联表,在二维条形图中,两个比例的值相差越大,则h : “ x 与 y 有关系”的可能性越大。3、为了调查高中生的数学成绩和物理成绩的关系,在某校随机抽取部分学生做调查,得到下列两份图表100%90%80%70%60%物理好50%物理差40%30%20%1
10、0%0%数学好数学差250200150物理差物理好100500数学好数学差根据以上图表, 列出相应的列联表, 根据图形回答, 数学成绩好坏与物理成绩好坏 关系。解:列联表如下:物理好物理差合计数学好80120200数学差7030100合计150150300根据图形,可知数学成绩好坏与物理成绩好坏有关系。五、拓展与提高五、小结六、作业思考:加深学生对假设检1、 某地区羊患某种病的概率是0.4, 且每只羊患病与否是彼此独立的, 今验思想的理解,能研制一种新的预防药,任选5 只羊做试验,结果这5 只羊服用此药后应用于实际问题中均未患病,问此药是否有效?50.078 ,这个概率解:假设药无效, 5 只
11、羊都不生病的概率是1 0.4很小,该事件几乎不会发生,但现在它确实发生了,说明假设不对,即药是有效的。2、 某接待站在某一周曾接待过12 次来访, 已知所有这12 次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的?解:利用小概率事件进行判断。假设接待时间没有有规定,即一周内任意一天都等可能,则 12 次接待在周二和周四的概率为212310 7 ,即千712万分之三, 根据小概率事件在一次实验中几乎不可能发生的思想,可知假设不成立,即可推断接待时间是有规定的。判断两个分类变量是否有关的方法反思归纳1 为考察某种药物预防疾病的效果,进行动物试验,得到如下的列联表:患病未患病总计服用药
12、104555未服用药203050总计3075105请问有多大把握认为药物有效?2、通过随机询问72 名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:女男总计读营养说明162844不读营养说明20828总计363672请问性别和读营养说明之间在多大程度上有关系?同步练习与测试:(基础题)1、根据下表计算:不看电视看电视男3785女35143计算随机变量的观测值k= 。解:把表格补充完整不看电视看电视总计男3785122女35143178总计72228300300(371438535) 24.51k722281221782、独立性检验常作的图形是和。答案:三维柱形图,二维条形图3、两个临界值为3.841与6.635。当k 23.841 时,认为事件A 与B 是(填“有关的”或“无关的”);当 k 26.635 时,有99%的把握说事件A 与B是 (填“有关的” 或“无关的” )。答案:无关的,有关的4、用k2 统计量进行独立性检验时使用的表称为,要求表中的四个数据大于。答案: 22列联表,5(中等题)5、设 A 为一随机事件,则下列式子中不正确的是()A P(AA)P( A) P( A) B P(AA) 1C P(AA)P(A) P(A) D P(A A)0答案:选C6、统计假设成立时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 4 Section B 2a-2e 教学设计 2024-2025学年人教版八年级英语下册
- 2024-2025版新教材高中化学 第2章 第2节 第1课时 氯气的性质教学设计 新人教版必修第一册
- Unit 5 A happy day(教学设计)-2024-2025学年辽师大版(三起)(2024)英语三年级上册
- 《第四单元 外国影视音乐 唱歌 小小少年》(教学设计)-2023-2024学年人教版音乐六年级上册
- 《小数的意义》(教学设计)-2024-2025学年四年级下册数学人教版
- 2023二年级数学上册 九 除法第1课时 长颈鹿与小鸟(1)配套教学设计 北师大版
- 三年级品德与社会上册 3.1 规则在哪里说课教学设计 新人教版
- 16《初识“WPS演示”》四年级信息技术教学设计 苏科版
- 《垃圾问题小思考》(教案)-2024-2025学年三年级上册综合实践活动吉美版
- 《自制收纳盒》(教案)-四年级上册劳动苏科版
- 2025年河北省保定市徐水区中考一模语文试题(原卷版+解析版)
- 2025届贵州省安顺市高三二模语文试题
- 2025中国海洋大学辅导员考试题库
- 新疆维吾尔自治区普通高职(专科)单招政策解读与报名课件
- 2024年昆明渝润水务有限公司招聘考试真题
- 2025-2030中国小武器和轻武器行业市场发展趋势与前景展望战略研究报告
- 高中主题班会 高考励志冲刺主题班会课件
- 高三复习:2025年高中化学模拟试题及答案
- 月考试卷(1~3单元)(试题)-2024-2025学年六年级下册数学人教版(带答案)
- 8.1薪火相传的传统美德 教学设计-2024-2025学年统编版道德与法治七年级下册
- 中国急性缺血性卒中诊治指南(2023)解读
评论
0/150
提交评论