常用逻辑用语_第1页
常用逻辑用语_第2页
常用逻辑用语_第3页
常用逻辑用语_第4页
常用逻辑用语_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 “ “数学是思维的科学数学是思维的科学” 逻辑是研究思维形式和规律的科学逻辑是研究思维形式和规律的科学. . 逻辑用语是我们必不可少的工具逻辑用语是我们必不可少的工具. . 通过学习和使用常用逻辑用语通过学习和使用常用逻辑用语, ,掌握常用逻掌握常用逻辑用语的用法辑用语的用法, , 纠正出现的逻辑错误纠正出现的逻辑错误, ,体会运用常体会运用常用逻辑用语表述数学内容的准确性、简捷性用逻辑用语表述数学内容的准确性、简捷性. .2008年年2月月思思考考 下列语句的表述形式有什么特点下列语句的表述形式有什么特点?你能判断你能判断它们的真假吗它们的真假吗?(1)若直线若直线ab,则直线则直线a和直

2、线和直线b无公共点无公共点;(2)2+4=7;(3)垂直于同一条直线的两个平面平行垂直于同一条直线的两个平面平行;(4)若若x2=1,则则x=1;(5)两个全等三角形的面积相等两个全等三角形的面积相等;(6)3能被能被2整除整除.例例1 1 判断下列语句中哪些是命题?是真命题还是判断下列语句中哪些是命题?是真命题还是假命题?假命题?(1)空集是任何集合的子集空集是任何集合的子集;(2)若整数若整数a是素数,则是素数,则a是奇数是奇数;(3)指数函数是增函数吗?指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行若空间中两条直线不相交,则这两条直线平行;(5) ;(6)x15. 2

3、22 方法小结方法小结:判断一个语句是不是命题,看它是否符合以下判断一个语句是不是命题,看它是否符合以下两个条件:两个条件:是陈述句是陈述句可以判断真假可以判断真假注意:注意:一般地,疑问句、祈使句、感叹句、开语句都不是命题,一般地,疑问句、祈使句、感叹句、开语句都不是命题,尤其是开语句,如第(尤其是开语句,如第(6)题中含有变量的语句)题中含有变量的语句例例1 1 判断下列语句中哪些是命题?是真命题还是判断下列语句中哪些是命题?是真命题还是假命题?假命题?(1)空集是任何集合的子集空集是任何集合的子集;(2)若整数若整数a是素数,则是素数,则a是奇数是奇数;(3)指数函数是增函数吗?指数函数

4、是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行若空间中两条直线不相交,则这两条直线平行;(5) ;(6)x15. 222 “若若p, p, 则则q” q” 的形式的形式也可写成也可写成 “如果如果p,p,那么那么q” q” 的形式的形式也可写成也可写成 “只要只要p,p,就有就有q” q” 的形式的形式pq记作记作:例例2 2 指出下列命题中的条件指出下列命题中的条件p和结论和结论q;(1)若整数若整数a能被能被2整除整除,则则a是偶数是偶数;(2)若四边形是菱形若四边形是菱形,则它的对角线互相垂直且平分则它的对角线互相垂直且平分.例例3 3 将下列命题改写成将下列命题改写成“若若

5、p,p,则则q”q”的形的形式式. .并判断真假并判断真假; ;(1)(1)面积相等的两个三角形全等面积相等的两个三角形全等; ;(2)(2)负数的立方是负数负数的立方是负数; ;(3)(3)对顶角相等对顶角相等. .练习练习1.举出一些命题的例子举出一些命题的例子,并判断它们的真假并判断它们的真假.2.判断下列命题的真假判断下列命题的真假: (1)能被能被6整除的整数一定能被整除的整数一定能被3整除整除; (2)若一个四边形的四条边相等若一个四边形的四条边相等,则这个四边形则这个四边形 是正方形是正方形; (3)二次函数的图象是一条抛物线二次函数的图象是一条抛物线; (4)两个内角等于两个内角等于 的三角形是等腰直角三的三角形是等腰直角三角形角形.45 3.把下列命题改写成把下列命题改写成“若若p, 则则q” 的形的形式式,并判断它们的真假并判断它们的真假:(1)等腰三角形的两腰的中线相等等腰三角形的两腰的中线相等;(2)偶函数的图象关于偶函数的图象关于y轴对称轴对称;(3)垂直于同一个平面的两个平面平行垂直于同一个平面的两个平面平行. 小结小结. .这节课我们学习了这节课我们学习了: :(1)(1)命题的概念命题的概念; ;(2)(2)判断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论