第二章+电磁场基本规律_第1页
第二章+电磁场基本规律_第2页
第二章+电磁场基本规律_第3页
第二章+电磁场基本规律_第4页
第二章+电磁场基本规律_第5页
已阅读5页,还剩79页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系1 第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系2 2.1 电荷守恒定律电荷守恒定律2.2 真空中静电场的基本规律真空中静电场的基本规律2.3 真空中恒定磁场的基本规律真空中恒定磁场的基本规律2.4 媒质的电磁特性媒质的电磁特性2.5 电磁感应定律和位移电流电磁感应定律和位移电流2.6 麦克斯韦方程组麦克斯韦方程组2.7 电磁场的边界条件电磁场的边界条件本章讨论内容本章讨论内容第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系32.1 电荷守恒定律电荷守恒定律 电磁场

2、物理模型中的基本物理量可分为源量和场量两大类。电磁场物理模型中的基本物理量可分为源量和场量两大类。电荷电荷电流电流电场电场磁场磁场(运动)(运动) 源量为电荷源量为电荷 和和电流电流 ,分别用来描述产生电磁效分别用来描述产生电磁效应的两类场源。电荷是产生电场的源,电流是产生磁场的源。应的两类场源。电荷是产生电场的源,电流是产生磁场的源。),(trq),(trI第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系4本节内容本节内容 2.1.1 电荷与电荷密度电荷与电荷密度 2.1.2 电流与电流密度电流与电流密度 2.1.3 电荷守恒定律电荷守恒定律第第 2 章章 河南城建

3、学院河南城建学院 电气与电子工程系电气与电子工程系5 电荷是物质基本属性之一。电荷是物质基本属性之一。 1897年英国科学家年英国科学家汤姆逊汤姆逊(J.J.Thomson)在实验中发现了在实验中发现了电子。电子。 1907 1913年间,美国科学家年间,美国科学家密立根密立根(R.A.Miliken)通过通过油滴实验,精确测定电子电荷的量值为油滴实验,精确测定电子电荷的量值为 e =1.602 177 3310-19 (单位:单位:C )确认了电荷的量子化概念。换句话说,确认了电荷的量子化概念。换句话说,e 是最小的电荷,而任是最小的电荷,而任何带电粒子所带电荷都是何带电粒子所带电荷都是e

4、的整数倍。的整数倍。 宏观分析时,电荷常是数以亿计的电子电荷宏观分析时,电荷常是数以亿计的电子电荷e的集合,故的集合,故可不考虑其量子化的事实,而认为电荷量可不考虑其量子化的事实,而认为电荷量q可任意连续取值。可任意连续取值。2.1.1 电荷与电荷密度电荷与电荷密度第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系61. 电荷体密度电荷体密度VrqVrqrVd)(d)(lim)(0VVrqd)(单位:单位:C/m3 (库库/米米3 ) 根据电荷密度的定义,如果已知根据电荷密度的定义,如果已知某空间区域某空间区域V 中的电荷体密度,则区中的电荷体密度,则区域域V 中的总电

5、荷中的总电荷q为为 电荷连续分布于体积电荷连续分布于体积V 内,用电荷体密度来描述其分布内,用电荷体密度来描述其分布 理想化实际带电系统的电荷分布形态分为四种形式:理想化实际带电系统的电荷分布形态分为四种形式: 点电荷、体分布点电荷、体分布电荷、电荷、面分布电荷、线分布电荷面分布电荷、线分布电荷qVyxzorV第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系7 若电荷分布在薄层上若电荷分布在薄层上,当仅考虑薄层外、距薄层的距离要当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时

6、,可将该薄层的厚度忽略,认为电荷是面分布。面分布的场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的电荷可用电荷面密度表示电荷可用电荷面密度表示。 2. 电荷面密度电荷面密度单位单位: C/m2 (库库/米米2) 如果已知某空间曲面如果已知某空间曲面S 上的电荷上的电荷面密度,则该曲面上的总电荷面密度,则该曲面上的总电荷q 为为SsSrqd)(SrqSrqrSSd)(d)(lim)(0yxzorqSS第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系8 若电荷分布在细线上,若电荷分布在细线上,当仅考虑细线外、距细线的距离要当仅考虑细线外、距细线的距离要比细线的直径大

7、得多处的电场,而不分析和计算线内的电场时,比细线的直径大得多处的电场,而不分析和计算线内的电场时,可将线的直径忽略,认为电荷是线分布。可将线的直径忽略,认为电荷是线分布。线分布的电荷可用电线分布的电荷可用电荷线密度表示。荷线密度表示。 3. 电荷线密度电荷线密度lrqlrqrlld)(d)()(lim0 如果已知某空间曲线上的电荷线如果已知某空间曲线上的电荷线密度,则该曲线上的总电荷密度,则该曲线上的总电荷q 为为 Cllrqd)(单位单位: C / m (库库/米米)yxzorql第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系9 对于总电荷为对于总电荷为 q 的电

8、荷集中在很小区域的电荷集中在很小区域 V 的情况,当不分的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中的电荷可看作位于该区域中心、电荷为中心、电荷为 q 的点电荷。的点电荷。 点电荷的电荷密度表示点电荷的电荷密度表示( )()0,0( ),0rqrrrrr其中4. 点电荷点电荷yxzorq第第 2 章章 河南城建学院河南城建学

9、院 电气与电子工程系电气与电子工程系102.1.2 电流与电流密度电流与电流密度说明说明:电流通常是时间的函数,不随时间变化的电流称为电流通常是时间的函数,不随时间变化的电流称为恒定恒定 电流电流,用,用I I 表示。表示。 存在可以自由移动的电荷存在可以自由移动的电荷; ; 存在电场。存在电场。单位单位: A (安)(安)电流方向电流方向: : 正电荷的流动方向正电荷的流动方向0lim ()ddtiqtqt 电流电流 电荷的定向运动而形成,用电荷的定向运动而形成,用i 表示,其大小定义为:表示,其大小定义为: 单位时间内通过某一横截面单位时间内通过某一横截面S 的电荷量,即的电荷量,即形成电

10、流的条件形成电流的条件:第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系11nn0dlimdSiiJeeSS 电荷在某一体积内定向运动所形电荷在某一体积内定向运动所形成的电流称为体电流,用成的电流称为体电流,用电流密度矢电流密度矢量量 来描述。来描述。J单位单位:A / m2 (安(安/米米2) 。 一般情况下,在空间不同的点,电流的大小和方向往往是不一般情况下,在空间不同的点,电流的大小和方向往往是不同的。在电磁理论中,常用同的。在电磁理论中,常用体电流体电流、面电流面电流和和线电流线电流来描述电流来描述电流的分别状态。的分别状态。 1. 体电流体电流 流过任意截面

11、流过任意截面S 的电流为的电流为体电流密度矢量体电流密度矢量JneS正电荷运动的方向正电荷运动的方向SJiSd第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系122. 面电流面电流 电荷在一个厚度可以忽略的电荷在一个厚度可以忽略的薄层内定向运动所形成的电流称薄层内定向运动所形成的电流称为面电流,用面电流密度矢量为面电流,用面电流密度矢量 来描述其分布来描述其分布SJ面电流密度矢量面电流密度矢量d 0tenelSJ0htt0dlimdSliiJeell 单位:单位:A/m (安(安/米)米) 。正电荷运动的方向正电荷运动的方向3. 线电流线电流 电荷在一个横截面可以忽略

12、的细线中做定向运动所形成的电荷在一个横截面可以忽略的细线中做定向运动所形成的电流称为线电流,可认为电流集中在细导线的轴线上。线电流电流称为线电流,可认为电流集中在细导线的轴线上。线电流是电磁理论中的重要概念。是电磁理论中的重要概念。第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系132.1.3 电荷守恒定律(电流连续性方程)电荷守恒定律(电流连续性方程)电荷守恒定律电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从物体电荷既不能被创造,也不能被消灭,只能从物体 的一部分转移到另一部分,或者从一个物体转移的一部分转移到另一部分,或者从一个物体转移 到另一个物体。到另一

13、个物体。电流连续性方程电流连续性方程积分形式积分形式微分形式微分形式流出闭曲面流出闭曲面S 的电流的电流等于体积等于体积V 内单位时内单位时间所减少的电荷量间所减少的电荷量恒定电流的连续性方程恒定电流的连续性方程0t恒定电流是无源场,电恒定电流是无源场,电流线是连续的闭合曲线,流线是连续的闭合曲线,既无起点也无终点既无起点也无终点电荷守恒定律是电磁现象中的基本定律之一。电荷守恒定律是电磁现象中的基本定律之一。VSVttqSJddddddtJ0dSSJ、0 J第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系142.2 真空中静电场的基本规律真空中静电场的基本规律静电场静

14、电场:由静止电荷产生的电场。由静止电荷产生的电场。重要特征重要特征:对位于电场中的电荷有电场力作用。对位于电场中的电荷有电场力作用。本节内容本节内容 2.2.1 库仑定律库仑定律 电场强度电场强度 2.2.2 静电场的散度与旋度静电场的散度与旋度第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系151. 库仑库仑(Coulomb)定律定律(1785年年) 真空中静止点电荷真空中静止点电荷 q1 对对 q2 的作用力的作用力:yxzo1r1q2r12R12F2q ,满足牛顿第三定律。,满足牛顿第三定律。2112FF 大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;大

15、小与两电荷的电荷量成正比,与两电荷距离的平方成反比;121212122301201244Rq qq q RFeRR2.2.1 库仑定律库仑定律 电场强度电场强度 方向沿方向沿q1 和和q2 连线方向,同性电荷相排斥,异性电荷相吸引;连线方向,同性电荷相排斥,异性电荷相吸引;说明:说明:第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系16 电场力服从叠加定理电场力服从叠加定理()iiRrr 真空中的真空中的N个点电荷个点电荷 (分别位于(分别位于 )对点电荷对点电荷 (位于(位于 )的作用力为)的作用力为12Nqqq、 、 、q12Nrrr、 、 、rqq1q2q3q4

16、q5q6q7NiiiiNiqqqRRqqFFi13014第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系172. 电场强度电场强度 空间某点的电场强度定义为置于该点的单位点电荷(又称空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即试验电荷)受到的作用力,即00)(lim)(0qrFrEq304)(RRqrE如果电荷是连续分布呢?如果电荷是连续分布呢? 根据上述定义,真空中静止点根据上述定义,真空中静止点电荷电荷q 激发的电场为激发的电场为()Rrr 描述电场分布的基本物理量描述电场分布的基本物理量 电场强度矢量电场强度矢量E0q试验正电荷试

17、验正电荷 yxzorqrREM第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系18小体积元中的电荷产生的电场小体积元中的电荷产生的电场( )rVyxzoriVrM)(rS面密度为面密度为 的面分布的面分布电荷的电场强度电荷的电场强度)(rl线密度为线密度为 的线分布的线分布电荷的电场强度电荷的电场强度体密度为体密度为 的体分布电荷产生的电场强度的体分布电荷产生的电场强度)(riiiiiRRVrrE304)()(VVRRrd)(4130SSSRRrrEd)(41)(30CllRRrrEd)(41)(30第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子

18、工程系193. 几种典型电荷分布的电场强度几种典型电荷分布的电场强度02lE 22 3 20(0,0, )2()lza zEzaz+(无限长)(无限长)(有限长)(有限长)lyxzoMa均匀带电圆环均匀带电圆环l1zM2均匀带电直线段均匀带电直线段均匀带电直线段的电场强度均匀带电直线段的电场强度:均匀带电圆环轴线上的电场强度:均匀带电圆环轴线上的电场强度:120210(coscos)4(sinsin)4llzEErrr-第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系20 例例 2.2.1 计算均匀带电的环形薄圆盘轴线上任意点的电场强计算均匀带电的环形薄圆盘轴线上任意

19、点的电场强度。度。 解解:如图所示,环形薄圆盘的内半径为如图所示,环形薄圆盘的内半径为a 、外半径为、外半径为b,电荷,电荷面密度为面密度为 。在环形薄圆盘上取面积元在环形薄圆盘上取面积元 ,其位置矢量为其位置矢量为 ,它所带的电量为它所带的电量为 。而薄圆盘轴线上的场点而薄圆盘轴线上的场点 的位置的位置矢量为矢量为 ,因此有,因此有Sd d d Sredd d d SSqS (0,0, )Pzzre z222 3/200( )dd4()bzSae zeE rz P(0,0,z)brRyzx均匀带电的环形薄圆盘均匀带电的环形薄圆盘dSadE2200dcossin)d0 xye(ee故故223/

20、222 1/222 1/200d11( )2()2()()bSSzzazzzzazb E ree由于由于第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系212.2.2 静电场的散度与旋度静电场的散度与旋度 VSVrSrE)d(1d)(0高斯定理表明高斯定理表明:静电场是有源场,电力线起始于正电荷,终止静电场是有源场,电力线起始于正电荷,终止 于负电荷。于负电荷。静电场的散度静电场的散度(微分形式)(微分形式)1. 静电场散度与高斯定理静电场散度与高斯定理静电场的高斯定理静电场的高斯定理(积分形式)(积分形式)( )0E r环路定理表明环路定理表明:静电场是无旋场,是保

21、守场,电场力做功与路径静电场是无旋场,是保守场,电场力做功与路径 无关。无关。静电场的旋度静电场的旋度(微分形式)(微分形式)2. 静电场旋度与环路定理静电场旋度与环路定理静电场的环路定理静电场的环路定理(积分形式)(积分形式)0d)(ClrE0)()(rrE第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系22 在电场分布具有一定对称性的情况下,可以利用高斯定理计在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。算电场强度。 3. 利用高斯定理计算电场强度利用高斯定理计算电场强度具有以下几种对称性的场可用高斯定理求解:具有以下几种对称性的场可用高斯定理求

22、解: 球对称分布球对称分布:包括均匀带电的球面,球体和多层同心球壳等。:包括均匀带电的球面,球体和多层同心球壳等。带电球壳带电球壳多层同心球壳多层同心球壳均匀带电球体均匀带电球体aO0第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系23 无限大平面电荷无限大平面电荷:如无限大的均匀带电平面、平板等。:如无限大的均匀带电平面、平板等。 轴对称分布轴对称分布:如无限长均匀带电的直线,圆柱面,圆柱壳等。:如无限长均匀带电的直线,圆柱面,圆柱壳等。第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系24 例例2.2.2 求真空中均匀带电球体的场强分布。已

23、知球体半径求真空中均匀带电球体的场强分布。已知球体半径为为a ,电,电 荷密度为荷密度为 0 。 解解:(1)球外某点的场强球外某点的场强0300341daqSES(2)求球体内一点的场强)求球体内一点的场强VSEVSd1d00ar0rrEa330022004433aaErr022044bar Er dr003rE (r a 时,因时,因 ,故,故22 3/23()zaz2200223/2223/20( )d 4()2()zIaIae aB zzaza2200d( cossin)d0 xyeee由于由于 ,所以,所以 在圆环的中心点上,在圆环的中心点上,z = 0,磁感应强度最大,即,磁感应强

24、度最大,即第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系322.3.2 恒定磁场的散度和旋度恒定磁场的散度和旋度 )()(0rJrBISrJlrBSC00d)(d)(1.1. 恒定磁场的散度与磁通连续性原理恒定磁场的散度与磁通连续性原理磁通连续性原理磁通连续性原理表明表明:恒定磁场是无源场,磁感应线是无起点和恒定磁场是无源场,磁感应线是无起点和 终点的闭合曲线。终点的闭合曲线。恒定场的散度恒定场的散度(微分形式)(微分形式)磁通连续性原理磁通连续性原理(积分形式)(积分形式)安培环路定理表明安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁恒定磁场是有旋场,是

25、非保守场、电流是磁 场的旋涡源。场的旋涡源。恒定磁场的旋度恒定磁场的旋度(微分形式)(微分形式)2. 恒定磁场的旋度与安培环路定理恒定磁场的旋度与安培环路定理安培环路定理安培环路定理(积分形式)(积分形式)0d)(SSrB0)(rB第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系33 解解:分析场的分布,取安培环路如图,则:分析场的分布,取安培环路如图,则 根据对称性,有根据对称性,有 ,故,故 12BBB00000202SySyJexBJex 在磁场分布具有一定对称性的情况下,可以利用安培环路在磁场分布具有一定对称性的情况下,可以利用安培环路定理计算磁感应强度。定理

26、计算磁感应强度。 3. 利用安培环路定理计算磁感应强度利用安培环路定理计算磁感应强度 例例2.3.2 求电流面密度为求电流面密度为 的无限大电流薄板产生的磁的无限大电流薄板产生的磁感应强度。感应强度。0SzSJe JlJlBlBlBSC0021dC1B2BOxy第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系342.4 媒质的电磁特性媒质的电磁特性 电荷在真空中产生电场的原因是电荷对电荷的作用力可以电荷在真空中产生电场的原因是电荷对电荷的作用力可以在真空中作用,从而电磁波可以在真空中传播。在真空中作用,从而电磁波可以在真空中传播。 电荷在非真空物质中产生的电场的怎么计

27、算电荷在非真空物质中产生的电场的怎么计算? ?电流在非真空物质中的磁场怎么计算?电流在非真空物质中的磁场怎么计算?第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系352.4 媒质的电磁特性媒质的电磁特性物质对电磁场的响应,分为三类:物质对电磁场的响应,分为三类: 传导传导:导体内部有大量能自由运动的电荷,在外电场下可:导体内部有大量能自由运动的电荷,在外电场下可以做宏观运动。以做宏观运动。 极化极化:电介质导电性能很差:电介质导电性能很差, ,电子被原子核紧紧束缚住,称电子被原子核紧紧束缚住,称为束缚电荷。在外电场作用下,束缚电荷不能做宏观运动,发为束缚电荷。在外电场

28、作用下,束缚电荷不能做宏观运动,发生微观的位移,称为极化电荷,产生极化电场。生微观的位移,称为极化电荷,产生极化电场。 磁化磁化:磁介质在外加磁场的作用下,分子电流取向发生变:磁介质在外加磁场的作用下,分子电流取向发生变化变化,称为磁化电流,产生磁化磁场。化变化,称为磁化电流,产生磁化磁场。第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系36 本节内容本节内容 2.4.1 电介质的极化电介质的极化 2.4.2 磁介质的磁化磁介质的磁化 2.4.3 媒质的传导特性媒质的传导特性媒质对电磁场的响应可分为三种情况:媒质对电磁场的响应可分为三种情况:极化极化、磁化磁化和和传导

29、传导。描述媒质电磁特性的参数为:描述媒质电磁特性的参数为: 介电常数介电常数、磁导率磁导率和和电导率电导率。第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系372.4.1 电介质的极化电介质的极化 电位移矢量电位移矢量无极分子无极分子有极分子有极分子无外加电场无外加电场无外加电场时,分子不规则运动,所有分子的固有电矩的矢量和无外加电场时,分子不规则运动,所有分子的固有电矩的矢量和平均起来互相抵消,宏观电矩为零。平均起来互相抵消,宏观电矩为零。第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系38无极分子无极分子有极分子有极分子有外加电场有外加电

30、场E极化电荷产生的电场将改变原来的电场。极化电荷产生的电场将改变原来的电场。当介质被放入电场时,介质表面或介质中心出现某种电荷分布,当介质被放入电场时,介质表面或介质中心出现某种电荷分布,这种现象称为介质的极化。极化而产生的电荷叫做这种现象称为介质的极化。极化而产生的电荷叫做极化电荷或束极化电荷或束缚电荷。缚电荷。 第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系2.4.2 磁介质的磁化磁介质的磁化 磁场强度磁场强度B介质中分子或原子内的电子运动形成分子介质中分子或原子内的电子运动形成分子电流,形成分子磁矩。电流,形成分子磁矩。 无外磁场作用时,分子磁矩不规则排列,无

31、外磁场作用时,分子磁矩不规则排列,宏观上不显磁性。宏观上不显磁性。 在外磁场作用下,分子磁矩定向排列,在外磁场作用下,分子磁矩定向排列,宏观上显示出磁性,这种现象称为磁介质宏观上显示出磁性,这种现象称为磁介质的磁化的磁化。无外加磁场无外加磁场第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系402.4.3 媒质的传导特性媒质的传导特性对于线性和各向同性导电媒质,媒质内任一点的电流密度矢量和对于线性和各向同性导电媒质,媒质内任一点的电流密度矢量和电场强度电场强度 成正比成正比欧姆定律的微分形式。欧姆定律的微分形式。称为媒质的电导率,单位是称为媒质的电导率,单位是S/m(西

32、(西/米)。米)。EJ几种材料在常温(几种材料在常温(20)下的电导率)下的电导率7第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系412.5 电磁感应定律和位移电流电磁感应定律和位移电流 本节内容本节内容 2.5.1 电磁感应定律电磁感应定律 2.5.2 位移电流位移电流 电磁感应定律电磁感应定律 揭示时变磁场产生电场。揭示时变磁场产生电场。 位移电流位移电流 揭示时变电场产生磁场。揭示时变电场产生磁场。 重要结论重要结论: 在时变情况下,电场与磁场相互激励,形成统一在时变情况下,电场与磁场相互激励,形成统一 的电磁场。的电磁场。第第 2 章章 河南城建学院河南城建

33、学院 电气与电子工程系电气与电子工程系422.5.1 电磁感应定律电磁感应定律 1881年年法拉第发现,当穿过导体回路的磁通量发生变化时,法拉第发现,当穿过导体回路的磁通量发生变化时,回路中就会出现感应电流和电动势,且感应电动势与磁通量的变回路中就会出现感应电流和电动势,且感应电动势与磁通量的变化有密切关系,由此总结出了著名的法拉化有密切关系,由此总结出了著名的法拉第第电磁感应定律。电磁感应定律。 负号表示感应电流产生的磁场总是阻止磁通量的变化。负号表示感应电流产生的磁场总是阻止磁通量的变化。inddt 1. 法拉第电磁感应定律的表述法拉第电磁感应定律的表述 in,i 当通过导体回路所围面积的

34、磁通量当通过导体回路所围面积的磁通量 发生变化时,回路中产生的感应电动势发生变化时,回路中产生的感应电动势 的大小等于磁通量的时间变化率的负值,的大小等于磁通量的时间变化率的负值,方向是要阻止回路中磁通量的改变,即方向是要阻止回路中磁通量的改变,即 in第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系43SSBd 设任意导体回路设任意导体回路 C 围成的曲面为围成的曲面为S,其单位法向矢量为其单位法向矢量为 ,则穿过回路的磁通,则穿过回路的磁通为为 neindddSBSt ne B CS dl 导体回路中有感应电流,表明回路中存在感应电场导体回路中有感应电流,表明回路

35、中存在感应电场 ,回路,回路中的感应电动势可表示为中的感应电动势可表示为inE因而有因而有SCSBtlEddddinClEdinin第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系44 感应电场是由变化的磁场所激发的电场。感应电场是由变化的磁场所激发的电场。 感应电场是有旋场。感应电场是有旋场。 感应电场感应电场不仅存在于导体回路中,也存在于导体回路之外不仅存在于导体回路中,也存在于导体回路之外 的空间。的空间。 对空间中的任意回路(不一定是导体回路)对空间中的任意回路(不一定是导体回路)C ,都有,都有 对感应电场的讨论对感应电场的讨论:SCSBtlEddddinS

36、CSBtlEdddd0dcClE 若空间同时存在由电荷产生的电场若空间同时存在由电荷产生的电场 , ,则总电场则总电场 应为应为 与与 之和,即之和,即 。由于。由于 ,故有,故有 EinEincEEEcEcE推广的法拉第推广的法拉第电磁感应定律电磁感应定律第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系45相应的微分形式为相应的微分形式为(1) 回路不变,磁场随时间变化回路不变,磁场随时间变化ddddSSBBSStt2. 引起回路中磁通变化的几种情况引起回路中磁通变化的几种情况磁通量的变化由磁场随时间变化引起,因此有磁通量的变化由磁场随时间变化引起,因此有BEt S

37、CStBlEdd( 2 ) 导体回路在恒定磁场中运动导体回路在恒定磁场中运动( 3 ) 回路在时变磁场中运动回路在时变磁场中运动CClBvlEd)(dinCSCStBlBvlEdd)(din动生电动势动生电动势第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系46 (1) ,矩形回路静止;,矩形回路静止;0cos()zBe Btxbaoyx均匀磁场中的矩形环均匀磁场中的矩形环LvBin00dcos()dsin()zzSSBSe Bte SabBttt (3) ,且矩形回路,且矩形回路上的可滑动导体上的可滑动导体L以匀速以匀速 运动。运动。vevx)cos(0tBeBz

38、解解:(1) 均匀磁场均匀磁场 随时间作简谐随时间作简谐变化,而回路静止,因而回路内的感应变化,而回路静止,因而回路内的感应电动势是由磁场变化产生的,故电动势是由磁场变化产生的,故B 例例 2.5.1 长为长为 a、宽为、宽为 b 的矩形环中有均匀磁场的矩形环中有均匀磁场 垂直穿过,垂直穿过,如图所示。在以下三种情况下,求矩形环内的感应电动势。如图所示。在以下三种情况下,求矩形环内的感应电动势。B (2) ,矩形回路的宽边,矩形回路的宽边b = 常数,但其长边因可滑动常数,但其长边因可滑动导体导体L以匀速以匀速 运动而随时间增大;运动而随时间增大;0BeBzxve v第第 2 章章 河南城建学

39、院河南城建学院 电气与电子工程系电气与电子工程系47 ( 3 ) 矩形回路中的感应电动势是由磁场变化以及可滑动导体矩形回路中的感应电动势是由磁场变化以及可滑动导体 L在磁场中运动产生的,故得在磁场中运动产生的,故得00sin()cos()vt bBtvbBt ( 2 ) 均匀磁场均匀磁场 为恒定磁场,而回路上的可滑动导体以匀速为恒定磁场,而回路上的可滑动导体以匀速运动,因而回路内的感应电动势全部是由导体运动,因而回路内的感应电动势全部是由导体 L 在磁场中运动产在磁场中运动产生的,故得生的,故得B或或in00ddd()ddSBSbB vtbB vtt CyzxCvbBleBevelBv00in

40、d)(d)(CSStBlBvdd)(inCSzzyzxSetBetBletBeved)cos(d)cos(00第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系48 (1)线圈静止时的感应电动势;)线圈静止时的感应电动势; 解解: (1)线圈静止时,感应电动势是由时变磁场引起,故)线圈静止时,感应电动势是由时变磁场引起,故 (2)线圈以角速度)线圈以角速度 绕绕 x 轴旋转时的感应电动势。轴旋转时的感应电动势。ab 例例 2.5.2 在时变磁场在时变磁场 中,放置有一个中,放置有一个 的的矩形线圈。初始时刻,线圈平面的法向单位矢量矩形线圈。初始时刻,线圈平面的法向单位矢

41、量 与与 成成角,如角,如图所示。试求:图所示。试求: 0sin()yBe Btneye0sin()dynSe BteSt 0cos()cos dSBtS 0cos()cosB abt xyzabB时变磁场中的矩形线圈时变磁场中的矩形线圈neCSStBlEddin第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系49 假定假定 时时 ,则在时刻,则在时刻 t 时,时, 与与y 轴的夹角轴的夹角 ,故故0t 0net 方法一方法一:利用式:利用式 计算计算indddSBSt 00d 1sin(2)cos(2)d2B abtB abtt (2)线圈绕)线圈绕 x 轴旋转时,

42、轴旋转时, 的指向将随时间变化。线圈内的的指向将随时间变化。线圈内的感应电动势可以用两种方法计算。感应电动势可以用两种方法计算。ne0n0ddsin()dsin()cos()ddySe BteSabBtttt indddSBSt 第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系500sin()sinB abt0022000cos()cossin()sincos ()sin ()cos(2)inab BtB abtB abtBabtB abt 上式右端第一项与上式右端第一项与( 1 )相同,第二项相同,第二项xyzabB时变磁场中的矩形线圈时变磁场中的矩形线圈ne12

43、234 方法二方法二:利用式:利用式计算。计算。xetBebelBvxyCd)sin()2(d)(012nxetBebexy)d()sin()2(034nCSStBlBvdd)(in第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系51 在时变情况下,安培环路定理是否要发生变化?有什么变在时变情况下,安培环路定理是否要发生变化?有什么变 化?即化?即问题问题:随时间变化的磁场要产生电场,那么随时间变化的电场:随时间变化的磁场要产生电场,那么随时间变化的电场 是否会产生磁场?是否会产生磁场?2.5.2 位移电流位移电流 静态情况下的电场基本方程在非静态时发生了变化,即静态

44、情况下的电场基本方程在非静态时发生了变化,即0EtBE 这不仅是方程形式的变化,而是一个本质的变化,其中包含这不仅是方程形式的变化,而是一个本质的变化,其中包含了重要的物理事实,即了重要的物理事实,即 时变磁场可以激发电场时变磁场可以激发电场 。JH(恒定磁场)(恒定磁场)?H(时变场)(时变场)第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系521. 全电流定律全电流定律而由而由JH时变情况下,电荷分布随时间变化,由电流连续性方程有时变情况下,电荷分布随时间变化,由电流连续性方程有 )(DtJ发生矛盾发生矛盾在时变的情况下不适用在时变的情况下不适用 解决办法解决办法

45、: 对安培环路定理进行修正对安培环路定理进行修正由由 D0)(HJ0)(tDJ0tJ将将 修正为:修正为: JHtDJH矛盾解决矛盾解决时变电场会激发磁场时变电场会激发磁场第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系53全电流定律:全电流定律:tDJH 微分形式微分形式StDJlHCsd)(d 积分形式积分形式 全电流定律揭示不仅传导电流激发磁场,变化的电场也可全电流定律揭示不仅传导电流激发磁场,变化的电场也可以激发磁场。它与变化的磁场激发电场形成自然界的一个对偶以激发磁场。它与变化的磁场激发电场形成自然界的一个对偶关系。关系。第第 2 章章 河南城建学院河南城建

46、学院 电气与电子工程系电气与电子工程系54dtDJ2. 位移电流密度位移电流密度q 电位移矢量随时间的变化率,能像电电位移矢量随时间的变化率,能像电流一样产生磁场,故称流一样产生磁场,故称“位移电流位移电流”。注注:在绝缘介质中,无传导电流,但有位移电流。在绝缘介质中,无传导电流,但有位移电流。 在理想导体中,无位移电流,但有传导电流。在理想导体中,无位移电流,但有传导电流。 在一般介质中,既有传导电流,又有位移电流。在一般介质中,既有传导电流,又有位移电流。q 位移电流只表示电场的变化率,与传位移电流只表示电场的变化率,与传导电流不同,它不产生热效应。导电流不同,它不产生热效应。q 位移电流

47、的引入是建立麦克斯韦方程组的至关重要的一步,它位移电流的引入是建立麦克斯韦方程组的至关重要的一步,它揭示了时变电场产生磁场这一重要的物理概念。揭示了时变电场产生磁场这一重要的物理概念。dJ第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系55 例例 2.5.3 海水的电导率为海水的电导率为4 S/m ,相对介电常数为,相对介电常数为 81 ,求频,求频率为率为1 MHz 时,位移电流振幅与传导电流振幅的比值。时,位移电流振幅与传导电流振幅的比值。 解解:设电场随时间作正弦变化,表示为设电场随时间作正弦变化,表示为则位移电流密度为则位移电流密度为其振幅值为其振幅值为传导电

48、流的振幅值为传导电流的振幅值为故故mcosxEe Etd0rmsin()xDJeEtt 3dm0rmm4.5 10JEE cmmm4JEE3dmcm1.125 10JJ第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系56mcos()(A/m)xHe Htkzdm2m()cos()sin()(A/m )xyzxxxyyyDJHeeee HtxyzHeeHtkzzze kHtkz m000m011dsin()dcos()(V/m)yyDDEte kHtkzttkeHtkz 式中的式中的 k 为常数。试求:位移电流密度和电场强度。为常数。试求:位移电流密度和电场强度。 例例

49、 2.5.4 自由空间的磁场强度为自由空间的磁场强度为 解解 自由空间的传导电流密度为自由空间的传导电流密度为0,故由式,故由式 , 得得DHt第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系57 例例 2.5.5 铜的电导率铜的电导率 、相对介电常数、相对介电常数 。设铜中的传导电流密度为设铜中的传导电流密度为 。试证明:在无线。试证明:在无线电频率范围内,铜中的位移电流与传导电流相比是可以忽略的。电频率范围内,铜中的位移电流与传导电流相比是可以忽略的。75.8 10 S/mr12mcos() A/mxJe Jtdr0r0mr0mcos()sin()xxDEJe E

50、teEtttt dmr0mJE 而传导电流密度的振幅值为而传导电流密度的振幅值为mmJE通常所说的无线电频率是指通常所说的无线电频率是指 f = 300 MHz以下的频率范围,即使以下的频率范围,即使扩展到极高频段(扩展到极高频段(f = 30300 GHz),从上面的关系式看出比),从上面的关系式看出比值值 Jdm/Jm 也是很小的,故可忽略铜中的位移电流。也是很小的,故可忽略铜中的位移电流。 解解:铜中存在时变电磁场时,位移电流密度为:铜中存在时变电磁场时,位移电流密度为位移电流密度的振幅值为位移电流密度的振幅值为1219dmr0mm7mmm21 8.854 109.58 105.8 10

51、JEfEfJEE 第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系582.6 麦克斯韦方程组麦克斯韦方程组麦克斯韦方程组麦克斯韦方程组 宏观电磁现象所遵循的基本规律,是电宏观电磁现象所遵循的基本规律,是电 磁场的基本方程。磁场的基本方程。 本节内容本节内容 2.6.1 麦克斯韦方程组的积分形式麦克斯韦方程组的积分形式 2.6.2 麦克斯韦方程组的微分形式麦克斯韦方程组的微分形式 2.6.3 媒质的本构关系媒质的本构关系第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系592.6.1 麦克斯韦方程组的积分形式麦克斯韦方程组的积分形式SVSCSCS

52、dVSDSBStBlEStDJlHd0dddd)(d第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系60DBtBEtDJH02.6.2 麦克斯韦方程组的微分形式麦克斯韦方程组的微分形式麦克斯韦第一方程,表明传导电麦克斯韦第一方程,表明传导电流和变化的电场都能产生磁场流和变化的电场都能产生磁场麦克斯韦第二方程,表麦克斯韦第二方程,表明变化的磁场产生电场明变化的磁场产生电场麦克斯韦第三方程表明磁场是麦克斯韦第三方程表明磁场是无源场,磁感线总是闭合曲线无源场,磁感线总是闭合曲线麦克斯韦第四方程,麦克斯韦第四方程,表明电荷产生电场表明电荷产生电场第第 2 章章 河南城建学院河

53、南城建学院 电气与电子工程系电气与电子工程系612.6.3 媒质的本构关系媒质的本构关系 EDHBEJ)(0)()()(EHHtEEtEH代入麦克斯韦方程组中,有代入麦克斯韦方程组中,有0/EHEtHEtHE 限定形式的麦克斯韦方程限定形式的麦克斯韦方程(均匀媒质)(均匀媒质)各向同性线性媒质的本构关系为各向同性线性媒质的本构关系为第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系62q 时变电场的激发源除了电荷以外,还有变化的磁场;而时变时变电场的激发源除了电荷以外,还有变化的磁场;而时变磁场的激发源除了传导电流以外,还有变化的电场。电场和磁场的激发源除了传导电流以外

54、,还有变化的电场。电场和磁场互为激发源,相互激发磁场互为激发源,相互激发。q 时变电磁场的电场和磁场不时变电磁场的电场和磁场不再相互独立,而是相互关联,再相互独立,而是相互关联,构成一个整体构成一个整体 电磁场。电磁场。电场和磁场分别是电磁场的电场和磁场分别是电磁场的两个分量。两个分量。q 在离开辐射源(如天线)的无源空间中,电荷密度和电流密在离开辐射源(如天线)的无源空间中,电荷密度和电流密度矢量为零,电场和磁场仍然可以相互激发,从而在空间形度矢量为零,电场和磁场仍然可以相互激发,从而在空间形成电磁振荡并传播,这就是电磁波。成电磁振荡并传播,这就是电磁波。第第 2 章章 河南城建学院河南城建

55、学院 电气与电子工程系电气与电子工程系63q 在无源空间中,两个旋度方程分别为在无源空间中,两个旋度方程分别为tDHtBE, 可以看到两个方程的右边相差一个负号,而正是这个负号可以看到两个方程的右边相差一个负号,而正是这个负号使得电场和磁场构成一个相互激励又相互制约的关系。当磁场使得电场和磁场构成一个相互激励又相互制约的关系。当磁场减小时,电场的旋涡源为正,电场将增大;而当电场增大时,减小时,电场的旋涡源为正,电场将增大;而当电场增大时,使磁场增大,磁场增大反过来又使电场减小。使磁场增大,磁场增大反过来又使电场减小。第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系64

56、麦克斯韦方程组麦克斯韦方程组时变场时变场静态场静态场缓变场缓变场迅变场迅变场电磁场电磁场(EM)准静电场准静电场(EQS)准静磁场准静磁场(MQS)静磁场静磁场(MS)0t0t0tD0tB小结小结: 麦克斯韦方程适用范围麦克斯韦方程适用范围:一切宏观电磁现象。:一切宏观电磁现象。静电场静电场(ES)恒定电场恒定电场(SS)第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系65cmmddsin()ddcos()uiCCUtttC Ut=msin()UtDEd 解解:( 1 ) 导线中的传导电流为导线中的传导电流为忽略边缘效应时,间距为忽略边缘效应时,间距为d 的两平行板的

57、两平行板之间的电场为之间的电场为E = u / d ,则,则 msinuUt 例例 2.6.1 正弦交流电压源正弦交流电压源 连接到平行板电容器连接到平行板电容器的两个极板上,如图所示。的两个极板上,如图所示。(1) (1) 证明电容器两极板间的位移电流证明电容器两极板间的位移电流与连接导线中的传导电流相等;与连接导线中的传导电流相等;(2)(2)求导线附近距离连接导线为求导线附近距离连接导线为r 处的磁场强度。处的磁场强度。CPricu平行板电容器与交平行板电容器与交流电压源相接流电压源相接第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系66与闭合线铰链的只有导线中

58、的传导电流与闭合线铰链的只有导线中的传导电流 ,故得,故得cmcos()iC Utm2cos()rHC Ut ( 2 ) 以以 r 为半径作闭合曲线为半径作闭合曲线C,由于连接导线本身的轴对称,由于连接导线本身的轴对称性,使得沿闭合线的磁场相等,故性,使得沿闭合线的磁场相等,故ddddSSDiJSSt式中的式中的S0为极板的面积,而为极板的面积,而0SCd为平行板电容器的电容。为平行板电容器的电容。则极板间的位移电流为则极板间的位移电流为mcos()2C UHe HetrCrHlH2dm0mccos()cos()Ut SC Utid第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气

59、与电子工程系67 例例 2.6.2 在无源在无源 的电介质的电介质 中,若已知中,若已知电场强度矢量电场强度矢量 ,式中的,式中的E0为振幅、为振幅、为角为角频率、频率、k为相位常数。试确定为相位常数。试确定k与与 之间所满足的关系,之间所满足的关系,并求出与并求出与 相应的其他场矢量。相应的其他场矢量。(00)J、(0)mcos() V/mxEe Etkz 解解: 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利是电磁场的场矢量,应满足麦克斯韦方程组。因此,利用麦克斯韦方程组可以确定用麦克斯韦方程组可以确定 k 与与 之间所满足的之间所满足的关系,以及与关系,以及与 相应的其相应的其他他场矢

60、量。场矢量。EEmmcos()sin()xyyyEeeEtkze kEtkzzz mcos()ykEBetkz对时间对时间 t 积分,得积分,得()xyzxxBEeeee Etxyz 第第 2 章章 河南城建学院河南城建学院 电气与电子工程系电气与电子工程系68BH=DE2msin()xyzyxxxyzeeeHk EHeetkzxyzzHHH msin()xxxDDeeEtkztt DHt由由22k mcos()ykEHetkzmcos()xDeEtkz以上各个场矢量都应满足麦克斯韦方程,将以上得到的以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H 和和 D代入式代入式第第 2 章章 河南

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论