版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最新大学数学 极限 极限概念是微积分的基本概极限概念是微积分的基本概念。极限是一种非初等运算念。极限是一种非初等运算, ,也也是微积分学研究的基本工具是微积分学研究的基本工具 . .后面将要介绍的函数的连续性、后面将要介绍的函数的连续性、导数、积分等重要概念,都是导数、积分等重要概念,都是以极限为基础的。以极限为基础的。极限是高等数学中的一种重要的研究方法。极限是高等数学中的一种重要的研究方法。最新大学数学 极限 极限是以发展的眼光分析事物极限是以发展的眼光分析事物(变量变量)的变化规律的变化规律,通过极限我们通过极限我们可以深入到函数的局部去了解函可以深入到函数的局部去了解函数数,并且体会如
2、何在运动的过程并且体会如何在运动的过程中把握变化的事物中把握变化的事物,从而深化对从而深化对客观世界的认识。客观世界的认识。1.3.1 数列的极限数列的极限(limit of sequence)数列的定义:数列的定义:最新大学数学 极限 按照一定规律有次序排列的无按照一定规律有次序排列的无穷多个数称为穷多个数称为数列数列。记作记作.nxnx称为称为通项通项( (一般项一般项) .) .,4321nxxxxx,1,41,31,21, 1n,) 1( ,1,1,11n最新大学数学 极限 数列的极限数列的极限 数列极限的定义,请同学们回忆一下。数列极限的定义,请同学们回忆一下。 中国古代的极限思想:
3、中国古代的极限思想:“一尺之椎,日取其半,万世不竭。一尺之椎,日取其半,万世不竭。”,21,21,21,21,21432n考察当考察当n+时,通项时,通项xn的变化趋势。的变化趋势。数列极限的实质:数列极限的实质:)(0n最新大学数学 极限例例如如,1,41,31,21, 1n)(0n,) 1(,43,34,21,21nnn)(1n,2,8,4,2n)(n,) 1( ,1,1,11n趋势不定趋势不定最新大学数学 极限Axnnlim数列数列nx数列当项数数列当项数n无限变大时无限变大时),(n的极限定义:的极限定义:数列的各项数列的各项 数值向一个数值向一个常数常数A无限靠近,无限靠近,则称常数
4、则称常数A为该数列的极限。为该数列的极限。记作记作或或)(nAxn最新大学数学 极限 如果一个数列的极限存在如果一个数列的极限存在, ,则称该则称该数列是数列是收敛收敛(converge)(converge); 如果一个数列的极限不存在如果一个数列的极限不存在, ,则称该则称该数列是数列是发散发散(diverge)(diverge)。最新大学数学 极限,21,21,21,21,21432n常数常数 0 称为此数列的极限称为此数列的极限)(0n021limnn记作:记作:最新大学数学 极限例如例如,1,41,31,21nnxn1)(0n,) 1(,43,34,21,21nnnnnxnn1) 1(
5、)(1n收收 敛敛最新大学数学 极限,2,8,4,2nnnx2)(n,) 1( ,1,1,11n1) 1(nnx趋势不定趋势不定发发 散散最新大学数学 极限nn2lim,2,8,4,2n)(n记作:记作:最新大学数学 极限例例1.1. 已知已知,) 1() 1(2nxnn证明证明.0limnnx证证: :0nx0) 1() 1(2nn2) 1(1n最新大学数学 极限n时,时,0) 1(12n可以无限变小可以无限变小故故0) 1() 1(limlim2nxnnnn0nx最新大学数学 极限函数函数)(xf随着自变量的变化而变化随着自变量的变化而变化,研究研究函数的极限函数的极限,就是研究当自变量就
6、是研究当自变量按照某种按照某种方式变化时所对应的方式变化时所对应的1.3.21.3.2函数的极限函数的极限(limit of function)函数值的变化趋势。函数值的变化趋势。最新大学数学 极限二、自变量趋于有限值时函数的极限二、自变量趋于有限值时函数的极限, )(xfy 对0)1(xx 0)2(xx0)3(xxx)4(x)5(x)6(自变量变化过程的六种自变量变化过程的六种形式形式:一、自变量趋于无穷大时函数的极限一、自变量趋于无穷大时函数的极限本节内容本节内容 : :最新大学数学 极限x时时,函数函数f(x)的极限的极限最新大学数学 极限定义:定义:设函数设函数y=f(x)在在 x大于
7、某个正数大于某个正数a时有定义时有定义,A是某确定常数是某确定常数,如果当自如果当自变量变量x 趋于趋于 时,时,f(x)与与A的距离的距离任意小任意小,则称函数则称函数f(x)在在 时时以以A为极限,为极限,)()()(limxAxfAxfx或x时时,函数函数f(x)的极限的极限x.,时的极限类似可定义xx记为记为最新大学数学 极限指数函数指数函数)1, 0( aaayxxay xay ) 1( a)1 , 0( xey )10( a最新大学数学 极限如如xexfy)(0limxxexxelim最新大学数学 极限例如例如. 01limxx01limxx. 01limxxoxyxy1.10的水
8、平渐近线为xyy同理同理: :最新大学数学 极限正弦函数正弦函数xysin xysin 不存在xxsinlim最新大学数学 极限xycos xycos 余弦函数余弦函数不存在xxcoslim最新大学数学 极限对数函数对数函数)1, 0(log aaxyaxyln xyalog xyalog )1( a)0 , 1( )10( a最新大学数学 极限xyarctan xyarctan 反反正正切切函函数数最新大学数学 极限0 xx时时,函数函数f(x)的极限的极限最新大学数学 极限定义:定义:设函数设函数y=f(x)在点在点x0的某空心邻的某空心邻域内有定义域内有定义,A是某确定常数,如果是某确定
9、常数,如果当自变量当自变量x趋近于趋近于x0时时,f(x)与与A的距的距离离任意小任意小,则称函数则称函数f(x)在在x趋于趋于x0时时以以A为极限,为极限,0 xx时时,函数函数f(x)的极限的极限)()()(lim00 xxAxfAxfxx或记为记为最新大学数学 极限 1 , 1)(xxxfx1yo10)(lim0 xfx11)(2xxxfyxoy12)(lim1xfx2最新大学数学 极限正弦函数正弦函数xysin xysin 1sinlim2xx0sinlim0 xx最新大学数学 极限xycos xycos 余弦函数余弦函数1coslim0 xx0coslim2xx最新大学数学 极限0c
10、oscoslim0 xxxx0sinsinlim0 xxxx00limxxxx 可以证明:可以证明:以下的极限均成立以下的极限均成立CCxx0lim.lim00 xxxx最新大学数学 极限3.3.单侧极限单侧极限- - 左极限与右极限左极限与右极限最新大学数学 极限左极限左极限 : )0(0 xfAxfxx)(lim0 x如果当如果当 从从0 x的的左侧无限趋近左侧无限趋近0 x时时,记着记着,0 xx函数函数f(x)无限趋近于一个确定的常无限趋近于一个确定的常数数A, 则称则称A为函数为函数f(x)当当0 xx时的左极限。记作时的左极限。记作最新大学数学 极限类似可定义类似可定义右极限右极限
11、 : )0(0 xfAxfxx)(lim0函数的左极限和右极限函数的左极限和右极限统称为单侧极限。统称为单侧极限。最新大学数学 极限对数函数对数函数)1, 0(log aaxyaxyln xyalog xyalog )1( a)0 , 1( )10( a最新大学数学 极限例如:例如:xxxxxxxfy2, 1220,sin01,)(2),(lim0 xfx求0lim)(lim200 xxfxx0sinlim)(lim00 xxfxx)(lim0 xfx最新大学数学 极限定理定理1.11.1:Axfxx)(lim0当当 时时, ,函数函数 极限存在的极限存在的充要条件是左、右极限存在且相等,充要
12、条件是左、右极限存在且相等,即即)(xf0 xx Axfxfxxxx)(lim)(lim00最新大学数学 极限例例6. 设函数设函数0,10,00, 1)(xxxxxxf讨论讨论 0 x时时)(xf的极限是否存在的极限是否存在 . 解解: 利用定理利用定理 因为因为)(lim)00(0 xffx) 1(lim0 xx1最新大学数学 极限)(lim)00(0 xffx) 1(lim0 xx1显然显然, )00()00(ff所以所以)(lim0 xfx不存在不存在 .最新大学数学 极限例例7 7 问问a a为何值时为何值时, ,所给函数所给函数x x=2=2处极限处极限存在。存在。)2(2)2(2
13、)2(10)(2xaxxaxxxf解解:左极限左极限2010lim)(lim)02(22xxffxx右极限右极限aaxxffxx24)2lim)(lim)02(222(最新大学数学 极限欲函数在欲函数在x x=2=2处极限存在,必须左极限处极限存在,必须左极限等于右极限,等于右极限,即即a=a=8 8最新大学数学 极限思考:思考: 1)1)研究函数极限时研究函数极限时, ,是否要考虑是否要考虑f f( (x x) )在在x x= =x x0 0时的性态?为什么?时的性态?为什么? 2)2)若若f f ( (x x0 0+0)+0)和和f f ( (x x0 0-0)-0)都存在都存在, ,当当
14、x x趋趋于于x x0 0时时, ,f f( (x x) )的极限存在吗?的极限存在吗? 3)3)如何利用如何利用f f ( (x x0 0+0)+0)和和f f ( (x x0 0-0)-0)来判断来判断当当x x趋于趋于x x0 0 时时, ,f f( (x x) )的极限不存在?的极限不存在? ?最新大学数学 极限4)4)若极限若极限)(lim0 xfxx是否一定有是否一定有)()(lim00 xfxfxx?最新大学数学 极限1coslim0 xx0coslim2xx2arctanlimxx2arctanlimxx1sinlim2xx0sinlim0 xx0limxxe01limxx常用
15、的极限结果:常用的极限结果:)(lim0为常数CCCxx最新大学数学 极限xxelim2limxxxxlnlimxxlnlim0 xx1lim0 xxcoslimxxsinlim极限不存在的有:极限不存在的有:最新大学数学 极限练习:练习:设设)1(12)11(1)1()(2xxxxxxxf求:求:)(lim1xfx)(lim1xfx)(lim1xfx)(lim1xfx最新大学数学 极限作业作业NO.13:(3) 分析分析 22)3(2xxy的复合结构的复合结构.解解:由由2232xxvvuyu复合而成的复合而成的.最新大学数学 极限作业作业NO.13:(4) 分析分析 3)5cos3tan(1 3xy的复合结构的复合结构.解解:由由xttvvuuy5cos3tan1323复合而成的复合而成的.xhttvvuuy5cosh3tan133最新大学数学 极限NO14. 不存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生会副主席个人工作总结
- 如何讲解机动车商业险-中国人寿财产保险公司新人培训课程模板课件
- 家庭金融理财
- 合同签署申请表-外包-V1.0
- 六年级上册道德与法治课件
- 《冬季如何进补》课件
- 《产销资料库》课件
- 地铁公共安全教育课件
- 卷02-备战2023年中考生物【名校地市好题必刷】全真模拟卷(福建专用)·第一辑(解析版)
- 医学生目标规划
- 五年级上册数学试题试卷(8篇)
- 2024-2025学年四年级科学上册第三单元《运动和力》测试卷(教科版)
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
- 科研伦理与学术规范 期末考试
- 教师专业成长(课堂PPT)
- 五位一体协同机制建设知识
- 特种设备法律法规以及标准培训课件
- 绘本PPT:可怕的大妖怪
- EN1779-欧洲无损检测标准
- 生态保护红线划定.ppt
评论
0/150
提交评论