版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、你能证明它们吗(一)u 教学目标:1. 了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。2. 经历“探索发现猜想证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3. 掌握证明的基本步骤和书写格式。u 教学重点、难点: 重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。 难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。u 教学过程:一. 复习:1、 什么是等腰三角形?2、 你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、 试用折纸的办法回忆等腰三角形有哪些性质
2、?二. 新课讲解:在八年级证明(一)一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理本套教材选用如下命题作为公理 :w 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 2.两条平行线被第三条直线所截,同位角相等; w 3.两边夹角对应相等的两个三角形全等; (SAS)w 4.两角及其夹边对应相等的两个三角形全等; (ASA)w 5.三边对应相等的两个三角形全等; (SSS)w 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论两角及其中
3、一角的对边对应相等的两个三角形全等。(AAS)定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,ABAC。求证:BC证明:取BC的中点D,连接AD。ABAC,BDCD,ADAD,ABCACD (SSS)B=C (全等三角形的对应边角相等)(让同学们通过探索、合作交流找出其他的证明方法。做BAC的平分线,交BC边于D;过点A做ADBC。学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明。)想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在
4、的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。三. 随堂练习:课本P4 1,2, (引导学生分析证明方法,学生动手证明,写出证明过程。)四. 课堂小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。五. 作业:P5 习题1.1 2. 3. 六. 教后反思:1、你能证明它们吗(二)u 教学目标:1. 进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。2. 经历“探索发现猜想证明”的过程。能够用综合法证明等腰三角形的两条腰上的
5、中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。3. 能够用综合法证明等腰三角形的判定定理。4. 了解反证法的推理方法,能运用反证法证明简单的命题。5. 会运用“等角对等边”解决实际应用问题及相关证明问题。u 教学重点、难点: 重点:正确叙述结论及正确写出证明过程。熟悉作为证明基础的几条公理的内容,通过学习,掌握证明的基本步骤和书写格式。 难点:等腰三角形的定理应用及由特殊结论归纳出一般结论。u 教学过程:一. 复习回顾:你知道等腰三角形具有怎样的性质吗?、二. 引导探索:等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的平分线、两腰上的中线和高线又具有怎样的
6、性质呢?(提出问题,激发学生探究的欲望。学生猜想)探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线段?你能用文字叙述你的结论吗?(学生动手画图、探索发现相等的线段并思考为什么相等)三. 例题讲解(1) 例1 证明:等腰三角形两底角的平分线相等。(引导学生分清条件和结论、画图、写出已知、求证。)已知:如图,在ABC中,ABAC,BD,CE是 ABC的角平分线。求证:BDCE(一生口述证明过程,然后写出证明过程。)分析如下证明:(略)提问:此题还有其它的证法吗?(2) 你能证明等腰三角形两条腰上的中线相等吗?高呢? (引导学生分清条件和结论、画图、写出已知、求证并证明。其它
7、证法合作交流完成。)4、议一议1:在上图的等腰ABC中,如果ABD1/3ABC, ACE1/3ACB,那么BDCE吗?如果ABD1/4ABC, ACE1/4ACB呢?由此你能得到一个什么结论?(根据图形引导学生分析归纳得出一般结论。学生分组思考、交流,在充分讨论的基础上得出一般结论写出证明过程。)(3) 如果AD1/2AC,AE1/2AB, 那么BDCE吗?如果AD1/3AC,AE1/3AB, 呢?由此你能得到一个什么结论?议一议2:把“等边对等角”反过来还成立吗?你能证明?定理证明已知:在ABC中B=C求证:AB=AC(引导学生证明定理)5、想一想:小明说,在一个三角形中,如果两个角不相等,
8、那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它?证明参考P8反证法:先假设命题的结论不成立,然后推导出与定义、公理、已知条件相矛盾的结果,从而证明命题的结论一定成立的证明方法。四. 随堂练习用反证法证明:经过直线外一点,有且只有一条直线与这条直线平行。五. 课堂小结:(1) 归纳判定等腰三角形判定有几种方法,(2) 证明两条线段相等的方法有哪几种。(讨论、交流)(3) 通过这节课的学习你学到了什么知识?了解了什么证明方法?掌握证明的基本步骤和书写格式。经历“探索发现猜想证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳
9、出一般结论。等腰三角形的判定定理。了解反证法的推理方法。六. 作业:课本p9 习题1.2 2. 3. 七. 教后反思:1 你能证明他们吗?(三)u 教学目标:1. 进一步学习证明的基本步骤和书写格式。2. 掌握证明与等边三角形、直角三角形有关的性质定理和判定定理。u 教学重点、难点:关于综合法在证明过程中的应用。u 教学过程:一. 温故知新1、已知:ABC,ACB的平分线相交于F,过F作DEBC, 交AB于D, 交AC于E(1) 找出图中的等腰三角形(2) BD,CE,DE之间存在着怎样的关系?(3) 证明以上的结论。2、复习关于反证法的相关知识练习:证明:在一个三角形中,至少有一个内角小于或
10、等于60。(笔试,进一步巩固学习证明的基本步骤和书写格式)学一学探索问题:一个等腰三角形满足什么条件时便成为等边三角形?你认为有一个角等于60的等腰三角形是等边三角形吗?你能证明你的思路吗?(把你的思路与同伴进行交流。) 定理:有一个角等于60的等腰三角形是等边三角形。1、 做一做:用两个含30角的三角尺,能拼成一个怎样的三角形?能拼成一个等边三角形吗?说说你的理由。由此你能想到,在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?能证明你的结论吗?(提示学生根据两个三角尺拼出的图形发现结论,并证明)证明:在ABC中,ACB=90,A=30,则B=60延长BC至D,使CD=BC,连接 A
11、DACB=90ACD=90AC=ACABCADC(SSS)AB=AD(全等三角形的对应边相等)ABD是等边三角形 BC=BD=AB 得到的结论:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。ADBC二. 例题学习 等腰三角形的底角为15,腰长为2a ,求腰上的高。 已知:在ABC中,AB=AC=2a,ABC=ACB=15 度,CD是腰AB上的高 求:CD的长解:ABC=ACB=15DAC=ABC+ACB=15+15=30CD=AC=2a=a(在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半)三. 随堂练习:课本p13页 随堂练习 1. 2. 四.
12、 课堂小结:通过这节课的学习你学到了什么知识?了解了什么证明方法?(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)五. 作业:课本P14页 习题1.3 1. 2. 六. 板书设计:1、你能证明它们吗(三)有一个角等于60的等腰三角形 在直角三角形中,如果一个锐角等于30,是等边三角形。 那么它所对的直角边等于斜边的一半。七. 教后反思:2.直角三角形(一)u 教学目标:1. 进一步掌握推理证明的方法,发展演绎推理能力。2. 了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。3. 结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其
13、逆命题不一定成立。u 教学重、难点u 教学过程:一. 引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。二. 新课讲解定理:直角三角形两条直角边的平方和等于斜边的平方。如图,在ABC中,C=90,BC=a,AC=b,AB=c,延长CB至点D,使BD=b,作EBD=A,并取BE=c,连接ED、AE,则ABCBED。BDE=90,ED=a(全等三角形的对应角相等,对应边相等)。四边形ACDE是直角梯形。S梯形ACDE =(a+b)(a-b)= (a+b)2ABE=180-ABC-EBD=180- 90=90AB=BESABC = c2
14、S梯形ACDE = SABE +SABC+ SBED , (a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+aba2+b2=c2反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:如图,在ABC,AB2+AC2=BC2,求证:ABC是直角三角形。证明:作出RtABC,使A=90,AB=AB,AC=AC,则AB2+AC2=BC2 (勾股定理)AB2+AC2=BC2 ,AB=AB,AC=AC,BC2= BC2BC=BCABCABC (SSS)A=A=90(全等三角形的对应角相等)因此,ABC是直角三
15、角形。定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。三. 随堂练习课本p18 1. 四. 布置作业课本P20 习题1.4 1. 2.五. 教后反思2.直角三角形(二)u 教学目标:1. 了解勾股定理及其逆定理的证明方法2. 结合具体例子了解逆命题的概念,会识别两个
16、互逆命题、知道原命题成立其逆命题不一定成立。u 教学重点、难点:进一步掌握演绎推理的方法。u 教学过程:一. 温故知新1、你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?(由学生回顾得出勾股定理的内容。)定理:直角三角形两条直角边的平方和等于斜边的平方。二. 学一学1、 问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:在ABC中,AB2+AC2=BC2求证:ABC是直角三角形 (讲解证明思路及证明过程,引导学生领会证明思路及证明过程,得出结论。)结论:如果三角形两边的平方和等于第三边的平方,那
17、么这个三角形是直角三角形。2、议一议:观察下列三组命题,它们的条件和结论之间有怎样的关系?如果两个角是对顶角,那么它们相等。如果两个角相等,那么它们是对顶角。如果小明患了肺炎,那么他一定会发烧。如果小明发烧,那么他一定患了肺炎。三角形中相等的边所对的角相等。三角形中相等的角所对的边相等。(引导学生观察这些成对命题的条件和结论之间的关系,归纳出它们的共性,进一步得出“互逆定理”的概念。)3、关于互逆命题和互逆定理。 (1)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。 (2)一个命题是真命题,它的逆命题却不一定
18、是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。(引导学生理解掌握互逆命题的定义。)三. 随堂练习:(1) 写出命题“如果有两个有理数相等,那么它们的平方相等”的逆命题,并判断是否是真命题。(2) 试着举出一些其它的例子。(3) 课本p24 1.四. 读一读“勾股定理的证明”的阅读材料。五. 课堂小结:本节课你都掌握了哪些内容?(引导学生归纳总结,互逆定理的定义及相互间的关系。)六. 布置作业1) ABC中,AC=3,BC=4, 则AB= 时,ABC是直角三角形。2) 如图(1),折叠长方形的一边AD落在边BC上的
19、点F处,已知AB=8, BC=10, 则EC= 。3) 下列图形中,不一定是轴对称图形的是( )A. 角 B. 线段 C. 等腰三角形 D.直角三角形 4) 如图(2),ACBC, AFC=AED=90, AD平分BAC, 则有( )A. AFGAGC B. CGDDEB C. ADCADE D. ADCABD 5) 如图(3),已知ABC是等边三角形,点D、E分别在边AC、BC上,且AD=CE, AE、BD交于点P, BQAE于Q。求证:BP=2PQ。七. 板书设计:12 直角三角形勾股定理: 互逆命题;逆定理: 互逆定理;八. 教后反思:2直角三角形(三)u 教学目标:1. 进一步掌握推理
20、证明的方法,发展演绎推理能力。2. 能够证明直角三角形全等的“HL”判定定理既解决实际问题。u 教学重点、难点: 重点:能够证明直角三角形全等的“HL”判定定理。并且用纸解决问题。 难点:证明“HL”定理的思路的探究和分析。-u 教学过程:一. 复习提问1、判断两个三角形全等的方法有哪几种?2、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。(思考交流引导学生分析证明思路,写出证明过程)二. 探究两边及其一个角对应相等的两个三角形全等吗?如果相等说明理由。如果不相等,应如何改变条件?用自己的语言清楚地说明,并写出证明过程。问题1、此定理适用于什么样的三
21、角形?(适用于直角三角形) 2、判定直角三角形的方法有哪些,分别说出来(HL,SAS,ASA,AAS,SSS.先考虑HL,在考虑另外四种方法。)三. 做一做 如图利用刻度尺和三角板,能否做出这个角的角平分线?并证明。(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)四. 练习 随堂练习P23-1 判断命题的真假,并说明理由1、 锐角对应相等的两个直角三角形全等。2、 斜边及一锐角对应相等的两个直角三角形全等。3、 两条直角边对应相等的两个直角三角形全等。4、 一条直角边和另一条直角边上的中线队以相等的两
22、个直角三角形全等。(对于假的命题要举出反例,真命题要说明理由。教师分析讲解。)五. 议一议 如图:已知ACB=BDA=900。要使 ACBBDA,还需要什么条件?把他们写出来并说明理由。(教学中给予学生时间和空间,鼓励学生积极思考,并在独立思考的基础上,通过交流,获得不同的答案,并将一种方法写出证明过程。)六. 随堂练习课本p24 习题1.5 1. 2. 七. 小结:1、本节课学习了哪些知识? 2、还有那一些方面的收获?八. 作业:课本P42 复习题 4. 5. 九. 板书设计:1.2直角三角形(2)斜边直角边定理: 如图:已知ACB=BDA=90。 要使 ACBBDA,还需要什么条件?把他们
23、写出来,并说明理由。 十. 教后反思3.线段的垂直平分线(一)u 教学目标:1. 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。2. 能够证明线段垂直平分线的性质定理、判定定理及其相关结论。3. 能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形。u 教学重点、难点:u 教学过程:一. 引入我们曾利用折纸的办法得到:线段垂直平分线上的点到这条线段两个端点的距离睛等,你能证明这一结论吗?二. 新课讲授定理:线段垂直平分线上的点到这条线段两个端点的距离相等。已知:如图,直线MNAB,垂足是C,且AC=BC,P是MN上的任意一点。求证:PA=PB。证
24、明:MNAB, PCA=PCB=90AC=BC,PC=PC PCAPCB(SAS)PA=PB(全等三角形的对应边相等)想一想,你能写出上面这个定理的逆合题吗?它是真命题吗?如果是请证明:定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(利用等腰三角形三线合一)做一做用尺规作线段的垂直平分线已知:线段AB 求作:线段AB的垂直平分线。作法:1、分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D,2、作直线CD。直线CD就是线段AB的垂直平分线。请你说明CD为什么是AB的垂直平分线,并与同伴进行交流。因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作
25、线段的中点。三. 随堂练习课本P28 1. 四. 小结这节课主要从理论上证明了线段的垂直平分线的性质,线段的垂直平分线的画法及原理。五. 作业:P28 习题1.6 1. 2. 3.六. 教后反思:3.线段的垂直平分线(二)u 教学目标:1. 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。2. 能够证明线段垂直平分线的性质定理、判定定理及其相关结论。3. 能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形。u 教学重点、难点u 教学过程:一. 引入: 剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规
26、作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?二. 新课讲授定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。证明:在ABC中,设AB、BC的垂直平分线相交于点P,连接AP、BP、CP,点P在线段AB的垂直平分线上PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等)同理:PB=PCPA=PC点P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。AB,BC,AC的垂直平分线相交于点P。议一议:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个,它们不
27、都全等)2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?(满足条件的等腰三角形可和出两个,分加位于已知边的两侧,它们全等)。做一做:已知底边上的高,求作等腰三角形。已知:线段a、b求作:ABC,使AB=AC,且BC=a,高AD=h.作法:(1)作线段BC=a(如图);(2)作线段BC的垂直平分线L,交BC于点D,(3)在L上作线段DA,使DA=h(4)连接AB,AC 作业: 6.教学后记:三. 随堂练习课本p31 习题1.7 1. 四. 小结 这节课主要学习证明了三角形的三条边的垂直平分线为什么交于一点,已知底边和底边的高求作等腰三角形的方法。五. 作业1) 等边三角形是 图形,它的对称轴是 。2) 点P为ABC内一点,且PA=PB=PC,则点P是 。3) 等腰三角形的对称轴有( )条A. 1 B. 2 C. 3 D.1至3 4) 等边三角形边长为2a,则高为( )A. a B. a C.a D.2a 5) 画一个不等边三角形ABC, 再画出到所画三角形的AB、AC边所在直线距离相等,到点B、C的距离相等的点,要求画出图形并写作法。6) 如图,已知AD是BAC的平分线,AD的垂直平分线EF与CB的延长线交于F,求证C=BAF.六. 教后反思4.角平分线u 教学目标:1. 进一步发展学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 情绪控制培训课件
- 赣东学院《室内专题项目综合性办公空间设计》2023-2024学年第一学期期末试卷
- 甘孜职业学院《沙盘疗法实训》2023-2024学年第一学期期末试卷
- 七年级道德与法治上册第一单元成长的节拍第二课学习新天地第二框享受学习教案新人教版
- 三年级数学上册七分数的初步认识一第3课时简单的分数加减法教案苏教版
- 三年级科学下册第二单元动物的生命周期第5课蚕的生命周期教学材料教科版
- 《眼表疾病教学课件》课件
- 《滤波器结构》课件
- 句式的转换课件
- 母乳指导培训课件
- 采购部绩效考核
- 超短波操作流程图
- 小学2022 年国家义务教育质量监测工作方案
- 化学品安全技术说明(胶水)
- 总工会新规慰问标准
- 西师大版四年级音乐上册第5单元《唱脸谱》教学设计
- 小学综合实践五年级上册第2单元《社会服务》教材分析及全部教案
- 高质量SCI论文入门必备从选题到发表全套课件
- 中空吹塑成型课件
- 常见鸡病防治课件
- 校服评标方法及打分表
评论
0/150
提交评论