【三维设计】2013届高考数学 第2章第9节函数与方程课件 新人教A版_第1页
【三维设计】2013届高考数学 第2章第9节函数与方程课件 新人教A版_第2页
【三维设计】2013届高考数学 第2章第9节函数与方程课件 新人教A版_第3页
【三维设计】2013届高考数学 第2章第9节函数与方程课件 新人教A版_第4页
【三维设计】2013届高考数学 第2章第9节函数与方程课件 新人教A版_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二 章 函数、导数及其应用,第九节 函数与方程,抓 基 础,明 考 向,提 能 力,教 你 一 招,我 来 演 练,备考方向要明了,1.函数的零点 (1)定义 对于函数yf(x)(xD),把使 成立的实数x叫做函数yf(x)(xD)的零点,(2)函数的零点与相应方程的根、函数的图象与x轴交点间的 关系 方程f(x)0有实数根函数yf(x)的图象与 有交点 函数yf(x)有 ,f(x)0,x轴,零点,3函数零点的判定(零点存在性定理) 如果函数yf(x)在区间a,b上的图象是连续不断的一 条曲线,并且有 ,那么函数yf(x)在区间 内有零点,即存在c(a,b),使得 ,这个 也就是f(x)0的

2、根,f(a)f(b)0,(a,b),f(c)0,c,二、二次函数yax2bxc(a0)的图象与零点的关系,(x1,0),(x2,0),3用二分法求方程近似解 (1)二分法的定义 对于在区间a,b上连续不断且 的函数yf(x),通过不断地把函数f(x)的零点所在的区间 ,使区间的两个端点逐步逼近 ,进而得到零点近似值的方法叫做二分法,f(a)f(b)0,一分为二,零点,(2)给定精确度,用二分法求函数f(x)零点近似值的步骤 如下: 确定区间a,b,验证f(a)f(b)0,给定精确度;求区间(a,b)的中点c;计算f(c); ()若f(c)0,则c就是函数的零点; ()若f(a)f(c)0,则令

3、bc(此时零点x0(a,c); ()若f(c)f(b)0,则令ac(此时零点x0(c,b) 判断是否达到精确度.即:若|ab|,则得到零点近似值a(或b);否则重复.,1(教材习题改编)下列图象表示的函数中能用二分法求 零点的是 (),答案:C,答案:C,3(教材习题改编)在以下区间中,存在函数f(x)x33x 3的零点的是 () A1,0 B1,2 C0,1 D2,3,答案: C,解析:注意到f(1)70,f(2)110,f(3)330,结合各选项知,选C.,解析:由f(2)f(3)0可知,答案:(2,3),答案: (2,0),5已知函数f(x)x2xa在区间(0,1)上有零点,则实 数a的

4、取值范围是_,解析:函数f(x)x2xa在(0,1)上有零点 f(0)f(1)0.即a(a2)0,解得2a0.,1函数的零点不是点 函数yf(x)的零点就是方程f(x)0的实数根,也就是函数yf(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点在写函数零点时,所写的一定是一个数字,而不是一个坐标,2函数零点具有的性质 对于任意函数,只要它的图象是连续不间断的,其函数零点具有以下性质: (1)当它通过零点(不是偶次零点)时,函数值变号; (2)相邻两个零点之间的所有函数值保持同号,3零点存在定理的零点个数 (1)在(a,b)上存在零点(此处的零点不仅指变号零点), 个数不定,若

5、仅有变号零点,则有奇数个 (2)若函数在(a,b)上有零点,不一定有f(a)f(b)0.,答案 B,自主解答当x0时,x22x30,解得x1或3,则f(x)在(,0上有一个零点; 当x0时,2ln x0,解得xe2, 则f(x)在(0,)上有一个零点,所以f(x)共有2个零点,答案C,巧练模拟(课堂突破保分题,分分必保!),答案: B,答案:D,冲关锦囊,函数零点的判断方法 (1)直接求零点:令f(x)0,如果能求出解,则有几个 解就有几个零点; (2)零点存在性定理:利用定理不仅要求函数在区间a,b 上是连续不断的曲线,且f(a)f(b)0,还必须结合函数 的图象与性质(如单调性、奇偶性)才

6、能确定函数有多少 个零点;,(3)利用图象交点的个数:画出两个函数的图象,看其交 点的个数,其中交点的横坐标有几个不同的值,就有 几个不同的零点,精析考题 例2(2012济南模拟)若函数f(x)x3x22x2的一个正数零点附近的函数值用二分法计算,其参考数值如下: 那么方程x3x22x20的一个近似根(精确度0.1)为_,答案 1.437 5(答案不唯一),自主解答通过参考数据可以得到: f(1.375)0.2600,且1.437 51.3750.062 50.1, 所以,方程x3x22x20的一个近似根为1.437 5.,3(2012锦州模拟)用二分法求方程x32x50在区间 2,3上的近似

7、解,取区间中点x02.5,那么下一个有解区间为_,答案: 2,2.5,冲关锦囊,求函数的零点在某精确度下的近似值,首先要熟练掌握用二分法求函数零点的一般步骤其次要注意正确计算,不能有小的计算错误第三确定好精确度,根据精确度终止计算.,精析考题 例4(2011辽宁高考改编)已知函数f(x)exxa有零点,则a的取值范围是_,自主解答f(x)exxa, f(x)ex1.令f(x)0,得x0. 当x0时,f(x)0,函数f(x)在(0,)上是增函数 故f(x)minf(0)1a. 若函数f(x)有零点,则f(x)min0. 即1a0,a1.,答案(,1,若函数变为f(x)ln x2xa,其他条件不变

8、,求a的取值范围,巧练模拟(课堂突破保分题,分分必保!),4(2012天津联考)若函数f(x)x33xa有3个不同 的零点,则实数a的取值范围是 () A(2,2) B2,2 C(,1) D(1,),答案: A,解析:函数f(x)有3个不同的零点,即其图象与x轴有3个不同的交点,因此只需f(x)的极大值与极小值异号即可 f(x)3x23,令3x230,则x1, 故极值为f(1)和f(1),f(1)a2,f(1)a2, 所以应有(a2)(a2)0,故a(2,2),5(2012南通质检)已知函数f(x)x2(1k)xk的一个 零点在(2,3)内,则实数k的取值范围是_,答案: (2,3),解析:因

9、为(1k)24k(1k)20对一切kR恒成立,又k1时,f(x)的零点x1(2,3),故要使函数f(x)x2(1k)xk的一个零点在(2,3)内,则必有f(2)f(3)0,即2k3.,冲关锦囊,此类利用零点求参数范围的问题,可利用方程,有时不易甚至不可能解出,而转化为构造两函数图象求解,使得问题简单明了,这也体现了数形结合思想,数学思想 数形结合思想与转化化 归思想在解决方程根的问题中的应用,巧妙运用 当x2时,f(x)3(x1)20,说明函 数在(,2)上单调递增,函数的值域 是(,1),又函数在2,)上单调 递减,函数的值域是(0,1方程f(x)k有两个不同的实根,转化为函数yf(x)和yk有两个不同的交点,如图所示,当0k1时直线yk与函数f(x)图象有两个交点,即方程f(x)k有两个不同的实根,答案:(0,1),题后悟道 解答本题利用了转化与化归、数形结合的思想,所谓转化与化归思想方法,就是在研究和解决有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论