




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5如何用好基本不等式1小王从甲地到乙地往返的时速分别为a和b(ab),其全程的平均时速为v,则a,v的大小关系为_答案av解析设甲、乙两地之间的距离为s.ab,v0,va.2若函数f(x)x (x2)在xa处取最小值,则a_.答案3解析x2,f(x)xx22224,当且仅当x2,即x3时等号成立,即a3,f(x)min4.3(2014南通模拟)设a0,b0,若是3a与3b的等比中项,则的最小值为_答案4解析因为3a3b3,所以ab1.(ab)222 4,当且仅当,即ab时等号成立4已知ma(a2),nx2(x),则m与n之间的大小关系为_答案mn解析ma(a2)24(a2),当且仅当a3时,等号成立由x得x2,nx24即n(0,4,mn.5已知正数x,y满足x2(xy)恒成立,则实数的最小值为_答案2解析x0,y0,x2y2(当且仅当x2y时取等号)又由x2(xy)可得,而2,当且仅当x2y时,max2.的最小值为2.6已知a0,b0,若不等式0恒成立,则m的最大值为_答案16解析因为a0,b0,所以由0恒成立得m()(3ab)10恒成立因为2 6,当且仅当ab时等号成立,所以1016,所以m16,即m的最大值为16.7若正实数x,y满足2xy6xy,则xy的最小值是_答案18解析x0,y0,2xy6xy,26xy,即xy260,解得xy18.xy的最小值是18.8已知a0,b0,函数f(x)x2(aba4b)xab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为_答案16解析根据函数f(x)是偶函数可得aba4b0,函数f(x)的图象与y轴交点的纵坐标为ab.由aba4b0,得aba4b4,解得ab16(当且仅当a8,b2时等号成立),即f(x)的图象与y轴交点纵坐标的最小值为16.9若对任意x0,a恒成立,则a的取值范围是_答案解析a对任意x0恒成立,设ux3,只需a恒成立即可x0,u5(当且仅当x1时取等号)由u5知0,a.10(1)已知0x1)的最小值解(1)y2x5x2x(25x)5x(25x)0x,5x0,5x(25x)()21,y,当且仅当5x25x,即x时,ymax.(2)设x1t,则xt1(t0),yt52 59.当且仅当t,即t2,且此时x1时,取等号,ymin9.11如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点已知炮弹发射后的轨迹在方程ykx(1k2)x2 (k0)表示的曲线上,其中k与发射方向有关炮的射程是指炮弹落地点的横坐标(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由解(1)令y0,得kx(1k2)x20,由实际意义和题设条件知x0,又k0,故x10,当且仅当k1时取等号所以炮的最大射程为10千米(2)因为a0,所以炮弹可击中目标存在k0,使3.2ka(1k2)a2成立关于k的方程a2k220aka2640有正根判别式(20a)24a2(a264)00a6.所以当a不超过6千米时,可击中目标12为了响应国家号召,某地决定分批建设保障性住房供给社会首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元已知建筑第5层楼房时,每平方米建筑费用为800元(1)若建筑第x层楼时,该楼房综合费用为y万元(综合费用是建筑费用与购地费用之和),写出yf(x)的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解(1)由题意知建筑第1层楼房每平方米建筑费用为720元,建筑第1层楼房建筑费用为7201 000720 000(元)72(万元),楼房每升高一层,整层楼建筑费用提高201 00020 000(元)2(万元),建筑第x层楼时,该楼房综合费用为yf(x)72x2100x271x100,综上可知yf(x)x271x100(x1,xZ)(2)设该楼
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影场记合同模板
- 二零二五版公司无偿使用车辆合同
- 属事业单位招聘面试资格二零二五年
- 天猫运营承包合作协议
- 卫生间改造施工方案计划
- 2025年记忆绵家居制品项目建议书
- 人教版七年级数学《整式的加减》教案
- 人教部编版四年级上册语文《女娲补天》教案
- 公司出游租车合同样本
- 借款分红合同标准文本
- 2024年安徽省中考英语真题(原卷版+解析版)
- 氟化碳作为二次电池正极材料的研究
- 2024年黑龙江齐翔建设投资集团有限公司招聘笔试冲刺题(带答案解析)
- 2024年佛山市高三二模普通高中教学质量检测二 数学试卷(含答案)
- 福建省国土空间规划(2021-2035年)公众版
- 青春期性教育完整版课件
- 2024年广东省广州市番禺区九年级中考一模数学试卷
- 摩托艇经营合作协议书模板
- MOOC 计量经济学-西南财经大学 中国大学慕课答案
- 2023年北京八十中初二(下)期中数学试卷(教师版)
- 麻醉护理的现状与展望
评论
0/150
提交评论