




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解析几何(14)一、选择题(本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)12019吉林辽源市田家炳中学调研以直线x1为准线的抛物线的标准方程为()Ay22x By22xCy24x Dy24x答案:D解析:易知以直线x1为准线的抛物线焦点在x轴的负半轴上,且抛物线开口向左,所以y24x,故选D.22019山东潍坊一模双曲线C:(0),当变化时,以下说法正确的是()A焦点坐标不变 B顶点坐标不变C渐近线方程不变 D离心率不变答案:C解析:若由正数变成负数,则焦点由x轴转入y轴,故A错误顶点坐标和离心率都会随改变而改变,故B,D错误该双曲线的渐近线方程为yx,不会随改变而改变,故选C.32019山东烟台诊断测试,数学运算若双曲线1(a0,b0)与直线yx有交点,则其离心率的取值范围是()A(1,2) B(1,2C(2,) D2,)答案:C解析:双曲线的焦点在x轴,一条渐近线方程为yx,只需这条渐近线的斜率比直线yx的斜率大,即.所以e2,故选C.42019重庆西南大学附中月考过抛物线x24y的焦点F作直线,交抛物线于P1(x1,y1),P2(x2,y2)两点,若y1y26,则|P1P2|()A5 B6C8 D10答案:C解析:根据抛物线的定义得|P1P2|y1y2p,可得|P1P2|8,故选C.52019湖南五市十校联考在平面直角坐标系xOy中,抛物线C:y24x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若NFR60,则|NR|()A2 B.C2 D3答案:A解析:如图,连接MF,QF,设准线l与x轴交于H,抛物线y24x的焦点为F,准线为l,P为C上一点,|FH|2,|PF|PQ|,M,N分别为PQ,PF的中点,MNQF,PQ垂直l于点Q,PQOR,|PQ|PF|,NFR60,PQF为等边三角形,MFPQ,F为HR的中点,|FR|FH|2,|NR|2.故选A.62019河南洛阳尖子生联考如图,已知在平面直角坐标系xOy中,点S(0,3),SA,SB与圆C:x2y2my0(m0)和抛物线x22py(p0)都相切,切点分别为M,N和A,B,SAON,则点A到抛物线准线的距离为()A4 B2C3 D3答案:A解析:连接OM,因为SM,SN是圆C的切线,所以|SM|SN|,|OM|ON|.又SAON,所以SMON,所以四边形SMON是菱形,所以MSNMON.连接MN,由切线的性质得SMNMON,则SMN为正三角形,又MN平行于x轴,所以直线SA的斜率ktan 60.设A(x0,y0),则.又点A在抛物线上,所以x2py0.由x22py,得y,yx,则x0,由得y03,p2,所以点A到抛物线准线的距离为y04,故选A.72019武汉市高中毕业生四月调研测试已知直线ykx1与双曲线x2y24的右支有两个交点,则k的取值范围为()A. B.C. D.答案:D解析:通解联立,得消去y得(1k2)x22kx50,所以k1,设直线与双曲线的两个交点的坐标分别为(x1,y1),(x2,y2),所以即整理得解得1k,所以实数k的取值范围是,故选D.优解因为直线ykx1恒过定点(0,1),双曲线x2y24的渐近线方程为yx,要使直线ykx1与双曲线的右支有两个交点,则需k1.当直线ykx1与双曲线的右支相切时,方程kx1,即(1k2)x22kx50有两个相等的实数根,所以(2k)220(1k2)0,得k(负值舍去),结合图象可知,要使直线ykx1与双曲线的右支有两个交点,则需k.综上,实数k的取值范围是,故选D.8已知F1,F2分别是椭圆C:1(ab0)的左、右焦点,若椭圆C上存在点P,使得线段PF1的中垂线恰好经过焦点F2,则椭圆C离心率的取值范围是()A. B.C. D.答案:C解析:如图所示,线段PF1的中垂线经过F2,PF2F1F22c,即椭圆上存在一点P,使得PF22c.ac2cac.又0e1e.92019云南昆明调研设点M为抛物线C:y24x的准线上一点(不同于准线与x轴的交点),过抛物线C的焦点F且垂直于x轴的直线与C交于A,B两点,设MA,MF,MB的斜率分别为k1,k2,k3,则的值为()A2 B2C4 D4答案:A解析:不妨设点A在x轴上方,如图,由题意知,抛物线C的准线方程为x1,焦点F(1,0)将x1代入抛物线C的方程得y2,所以A(1,2),B(1,2)设点M的坐标为(1,y0),则k1,k2,k3,所以2.故选A.102019湖北武汉调研已知A,B为抛物线y24x上两点,O为坐标原点,且OAOB,则|AB|的最小值为()A4 B2C8 D8答案:C解析:当直线AB的斜率不存在,即AB垂直于x轴时,因为抛物线方程为y24x,OAOB,所以AOB是等腰直角三角形,可取A(4,4),B(4,4),所以|AB|8.当直线AB的斜率存在时,设直线AB的方程为xmyb(m0,b0),A(x1,y1),B(x2,y2),因为抛物线方程为y24x,所以联立方程得消去x得y24my4b0,所以16m216b0,y1y24m,y1y24b,由x1my1b,x2my2b得x1x2m2y1y2mb(y1y2)b24bm24bm2b2b2,因为OAOB,所以0,即x1x2y1y20,所以b24b0,得b4或b0(舍去),所以|AB|48,所以当直线AB的斜率存在时,|AB|无最小值综上,|AB|min8,故选C.112019昆明市高三复习教学质量检测已知F1,F2是椭圆E:1(ab0)的两个焦点,过原点的直线l交椭圆E于A,B两点,0,且,则椭圆E的离心率为()A. B.C. D.答案:D解析:解法一根据对称性,线段F1F2与线段AB在点O处互相平分,又0,所以AF2BF2,连接AF1,BF1,所以四边形AF1BF2是矩形,|AF1|BF2|.根据椭圆的定义,|AF1|AF2|2a,又,所以|AF1|a,|AF2|a,在RtAF1F2中,|F1F2|2c,由勾股定理得(2c)222,得2,所以椭圆E的离心率e.故选D.解法二根据对称性,线段F1F2与线段AB在点O处互相平分,又0,所以AF2BF2,连接AF1,BF1,所以四边形AF1BF2是矩形,|AF1|BF2|.又,不妨设|AF2|3,|BF2|4.根据椭圆的定义,2a|AF1|AF2|437,2c|F1F2|5,所以椭圆E的离心率e,故选D.122019湖南湘东六校联考已知双曲线1(a0,b0)的两顶点分别为A1,A2,F为双曲线的一个焦点,B为虚轴的一个端点,若在线段BF上(不含端点)存在两点P1,P2,使得A1P1A2A1P2A2,则双曲线的渐近线的斜率k的平方的取值范围是()A. B.C. D.答案:A解析:不妨设点F为双曲线的左焦点,点B在y轴正半轴上,则F(c,0),B(0,b),直线BF的方程为bxcybc.如图,以O为圆心,A1A2为直径作圆O,则P1,P2在圆O上,由图可知即解得120)的焦点为F,O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36,则抛物线C的方程为_答案:y216x解析:设圆的圆心为M(xM,yM)根据题意可知圆心M在抛物线C上又圆的面积为36,圆的半径为6,则|MF|xM6,即xM6,又由题意可知xM,6,解得p8.抛物线C的方程为y216x.142019湖北武汉调研测试已知F为椭圆C:1(ab0)的右焦点,O为坐标原点,M为线段OF的垂直平分线与椭圆C的一个交点,若cosMOF,则椭圆C的离心率为_答案:解析:由题意知F(c,0),则可设M.将M代入椭圆C的方程,得1,即b2y.设E为线段OF的垂直平分线与x轴的交点,则MOE为直角三角形由于cosMOF,所以不妨设3,则|OM|7,c6.由勾股定理可得|ME|y0|2,即b240,得b240.又a2b236,所以a485a23240,解得a281或a24(舍去),故a9,所以椭圆C的离心率e.152019石家庄高中毕业班检测已知双曲线方程C:1(a0,b0),P是双曲线上一点,F1,F2为双曲线的焦点,F1PF260,PF1F2的面积为3,则b_.答案:1解析:SPF1F2b23,b21,b1.1620
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 4 Section B 2a-2e 教学设计 2024-2025学年人教版八年级英语下册
- 2024-2025版新教材高中化学 第2章 第2节 第1课时 氯气的性质教学设计 新人教版必修第一册
- Unit 5 A happy day(教学设计)-2024-2025学年辽师大版(三起)(2024)英语三年级上册
- 《第四单元 外国影视音乐 唱歌 小小少年》(教学设计)-2023-2024学年人教版音乐六年级上册
- 《小数的意义》(教学设计)-2024-2025学年四年级下册数学人教版
- 2023二年级数学上册 九 除法第1课时 长颈鹿与小鸟(1)配套教学设计 北师大版
- 三年级品德与社会上册 3.1 规则在哪里说课教学设计 新人教版
- 16《初识“WPS演示”》四年级信息技术教学设计 苏科版
- 《垃圾问题小思考》(教案)-2024-2025学年三年级上册综合实践活动吉美版
- 《自制收纳盒》(教案)-四年级上册劳动苏科版
- 2025年河北省保定市徐水区中考一模语文试题(原卷版+解析版)
- 2025届贵州省安顺市高三二模语文试题
- 2025中国海洋大学辅导员考试题库
- 新疆维吾尔自治区普通高职(专科)单招政策解读与报名课件
- 2024年昆明渝润水务有限公司招聘考试真题
- 2025-2030中国小武器和轻武器行业市场发展趋势与前景展望战略研究报告
- 高中主题班会 高考励志冲刺主题班会课件
- 高三复习:2025年高中化学模拟试题及答案
- 月考试卷(1~3单元)(试题)-2024-2025学年六年级下册数学人教版(带答案)
- 8.1薪火相传的传统美德 教学设计-2024-2025学年统编版道德与法治七年级下册
- 中国急性缺血性卒中诊治指南(2023)解读
评论
0/150
提交评论