对Hopfield神经网络的直接数学分析_英文_.pdf_第1页
对Hopfield神经网络的直接数学分析_英文_.pdf_第2页
对Hopfield神经网络的直接数学分析_英文_.pdf_第3页
对Hopfield神经网络的直接数学分析_英文_.pdf_第4页
对Hopfield神经网络的直接数学分析_英文_.pdf_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

军 10 期 19 92年10月 电子学报 人 C T AE L ECT R ON IC人SIN IC人 V ol 2 0 O et 饨10 1092 AS r aigh 于 o rwa rd M a t卜 ema ie a lA na l ysis 于 or 卜 e H op 于iel dN eura l N etwork 对H叩f i e l d神经网络的直接数学分析 食 Xi angsu n Z ha ng H ong 芬 e ng Li Xi ao do ng W a ng In stitute o fAp plied M athematies Chin e seA e adem 丫 of Seie n e e B eijing 100080 二 Abs七 r et In steadofu singstatistiealnatu re teehniqu es whieh a re in n e ural s n a o etwo rkanalysis u nderstandingof straightforward m athematiealanalysis 15de veloped this PoPular P压Per t0 proPe rties ofthe H opfieldn etwo rk whe nit15 Us ed stored a C AM By Promote in troduc ing aeon e ePtofn on一rthogon al deg re e d ofa 户一et n 一binary thenetwork 1 e the m aximumn um be rofstablestored Patte rns 15 p atte r n s theeapaeityof n d l in the w o rstease andthestability deg re e 无 a qu antityde seribing ther adiu sof 15 Po sitivelyProPo rtio nalto n一P一 P一 1 J a nd in ve rs elyProPortio nalto 户 e o nverge n ee ba sin Con eePtsofa sso eiative Pat tern andspuriou s patte r n a reeo nsidered Abo utspu rio u s patte r n s w e ha ve Pr o ved 李 that l in m c C一 S gn 急 a P a re pu riou patte r n s w he re a 任f l 一 l 拼 K ywo rds H opfieldn etwork Capa eity A sso eiative patte r n s Spu riou s pattern s 提典 本文不是使用一般常用 的统计技术 而是直接采用数学方法对神经网络进行分析 以便对Ho Pf i e l d网用作C人M时的性质有更进一步的了解 通过引进p个 n 维存储模式之间的非正交 度d的概念 给出了网络的容t 即德定的存储向t的最大数目 在最坏的情形下是 n d d l 而描述收敛盆半径的t 稳定度护 则正比于 n一P一 户一l d且反比于p 本文考察了相 关 式和伪 式的二关于伪模式 证明了在某种条件下s s n 急 恤 伪模 式 其 中 f l 一 11 拌二1 户 关健词 H opfield网 容是 相关模式 伪模式 岁 1 I ntro du et io n Inm any e autho rs oPinio ns a ss o eiativ e storageandr e e allof info rm T 五e a s s oeiativ e m emory m odelore o nt ent一addre s sable z n emory CAM w as Pr oPo ed byKoho n e n A nderso n 幻 N aka no A m a ri Ja nd m a nyothers Itha s e n j oyed 名r e atpoPula rity sine e H opfield drew the 名n alog yto Physie al spinsystem s m emory ation by a s so eiation w ith othe r info rmatio n M anuse riptr e e eiv ed Feb 1992 aeeepted M a丫 1092 T hi r e se a reb 15 su p po rtedby the N atio n al N atu re Seien CeFOu ndatiQn 二章祥荪 李宏峰 王晓东 中国科学院应用数学 研究所 北京100080 第 1 0 期 章祥荪等 对Ho Pf ie l d神经网络的直接数学分析 1l 套 15 the simplestap plie ationof eo lle ctive e omPutatio nonan e u raln etwork but as yet ago odthe oretiealunde rsta nding fo ritsbeha vior ha sn ot bee n reached In thisPaPerwe us estr aightforwa rd m athematieala n alysis in stead ofpoPula rstatistiealnatu re m ethod to dise uss the eaPa eityofthe H opfieldnet w orkandothe rrelated Problems TheHoPfield networke o nsistsof Pa irw ise e on n比tedneurons T hei一th ne u ro n ea n bein o n eoftwostates y 一 1 or l 二 l then define the statee olumnveeto r y to be an一dime nsio nal binaryve eto r who se i一th e omPon e nte o rresPonds tothe state ofthe i一th neu ro n Let 势 1 be thestr e ngth ofthe syn aptie eonn e etio n from n e uro n 1 to n e u ron i 协11 妙川势 0 In this pa卜 er w esimPlifythe m odel bysetting theth re sholdvoltageofe v eryn e uro n to be zero Iti r ea so nable whe n the n etwork 15 u s ed as C AM but15 note ssentialto m athemati ealanalysis Let W be annxnze ro一diago n alsym m etrie m atrix w hos e e ntriesa r e the妙11 defined abo v eand w be itsi一th row T he n the n etworkstarts in a n initial stateand r u ns with the follow ingdyn a m ie equatio n s Wh enthe H opfieldn etwo rk 10 u s edas CAM letyl 一 be a P一et ofn一dim e nsion al binarye olumnveeto rs w hieh a re to be stor ed W ealsoe all these v e etorsthe m emoriesorPatterns W e form a nnxn m atrix W 君二 一1 3 for e a eh patte r ny召 wherel de no te sthe nxn ide ntitvm atrix a ndthes upe rs e ript T de n otes tran sPo s etoarowveeto r N ow fo r the setof 户pattern s 1 一 w eean defin ethe H oPfieldeon n e etio n m atrix in 2 a s 二 上 自w 上自 一之2 n 邵一玉 n 翻一l 4 o r m ore Pre eis ely I D I二土自 兮片 5 像 协 一l 0 Equ atio n 2 andasynehro n ous r U nIn i笋i both Proeedu res as a nonlin e a r m aPPing synehron ou s be viewed n 一dime n si o nal b in a rysPaee S interesting Problem tO from itself the n the fir st 15 to finditsfix edPoint orstab le patte rn in thesPae esatisfying sgn w r 宁 sgn w W ee a n putthisprob lem 6 in the follow 一 1 sgn W t 艺 手 1 n 1 尹 几 n g 准 l sgn W 2 whe r e thesgn fun etio n oPerate son the v ee to r W y e ompo ne ntwis ea nd 15 the de s e rete tim e inte rval 0 1 In thispaP e r we s etsgn 0 1 The e x aetnatureof thisproeess 15 va ryinga e e ording to w hethe r ana synehro nou supdate Pro e edure orasyn ehron o u s pro e edu r e 15being used In syneh ronou sProe edure eaehofthe n eurons51 m ulta n eouslyevaluate sandupdate s its state ae e o rding to equatio n 2 In a synehr onous Proeedu re thee omPo n e ntsofthee u rrent veeto r y t a reuPdatedoneata time ae c ording to l toProduee anewstateveetor ingdiffe rent w ay given 户pa tte r n s l find a eonneetion m atrix W m akin g th e s epatte rn sto be stableu nde rthe m aPping sgn W This15 aetu all丫a pr oblem con ce rn ed in the CAMle a rning r ulee o n stru etio n Aw el l一knownobservatio n 15 thatif I a re m utu allyorthogo nal the nyl s atisfy 6 Aw e ak definitio n for the eaPaeityof the H oPfieldn etwork 15 De干i nition l田 T he eapaeity 户 15 the m a x im um n um b er of fix ed Points orstablestored patte r ns then etworke a n ha v eby appropriatelye on strueting its e on ne Ction m atrix In this se n se it15known thattheea P aeity 15户 2几by anum be rof inte r e sting l2电 子 学报 1992年 butd iffe rentm etho ds 一1 1J Som eauthors ha ve ehos e na m o r ee omPle xe o n n e etion m atr ix tban W in 4 to r e aeh thema ximum ea Pa eity su ehas spe etra l sehemes explo r ed byV enkate shand Psaltis 0 and D em bo 1 1 a s follow s W Y Y Y 一IY 7 w he r ey 1 In the e a seon e ha s W 忍 l 户 a s long a s J 5 ar e lin ea rlyindePende nt Butm o st PaPe rs e o n sider the eaPaeity ofthe H oPfieldnetwo rk in te rmsofa m od ified versionof definitio n l that15 find the m aximumnum be r of fix ed Points a H oPfield network w ith aspe eifiede o n n eetion m atrix e a n have In theea s eof 4 or 5 the observ ation m entionedabo v e the adva ntage of m utu allyorthogon alstored patte r n s tosa tisty equation 6 plays ave ry importa nt role in the r e 吕ea reh for e aPa eity Se v e r al a uthors 1 1一盈 ha ve a rgu ed thatif 15 m u eh l a rge r than P and 君 5 aree五os e nra ndom ly p re e isely the e ompon e ntsof 召ar e deter min ed random ly a nd indePe nde n tl y tobe eq u t r 一 W th r ob b t 合 the the r e 15 a highprobability thatthe 5 will be n e a rlyorthogo nal and fu rther a high pr obability thatthe 君 5satisfyequ atio n 6 But asPointedout bythe authorsof 12 theweak eaPaeity definitio n15 n otv eryu s e ful be eau s eitm e ans that thenetwork 15 m er elyable to reme垃ber thethings w hieh ar estored but a sanass o eiativ e m emo ry w e wa ntsomee r ror一e o rreetingo r Pull一in ProPe rty In ot her w ords the storedPatter ns a s fix ed Points orattraetorsofthe m apPing n e ed tohave a ba sin ofattraetion with non z e r orad ius in te rms ofthe H am mingdist anee H e r e the H am mingdistan e e oftwo Pa tte r n s15the num be rofbits in thesetwoPat ter nsw hieh do n ot m ateh Thenw e ha ve thefollowins strong definitionfo rtheeapa eityofthe H opfiel dn etwork D e于 ini 七io n2 The eaPa eity p of a H oPfield network w ith sPe eified W 15 the m ax im umnum be r ofstored Pat te r nsthat h av e d esir ed basins of attr a etio n Be side s a bove e apa eity definition s w hieh are imPo rtan t fo rdise u s sio n ofn etwork s e apa eity thea utho rsof 12 also d ise u ssed eo n ve rgenee beha vio rsof an input unde r the n etwo rk dyn am ie s T heyindie atedthat the r e areat Iea stthr e e Possibilities ofeo nve rgen e e in the a syn ehron ouseas e w hieh c o rr e sP ondtothr e e definition softhe ba sin ofat traetio n Firstly if a n input ve etor fallsinto the ba sin ofattraetionofastored Pattern the n itsi一th eompo n e nt w ill be ehangedto the eo rr esPo ndinge omPon e ntvalueof the stored Pat te rn afteron eupdate by l W e eallthis kind of basin ofattraetiona n i们 m ediatee on v e rge n e e ba sin oron e一tepeo n ve rgen e e ba sin In the e aseofsynehro nou s Proe edu re w ith thisbasin definitio n thein Putgo e sto thestor ed patter n in o n e teP Se e o nd ly fo ra n inPutfall ingin a ba sin of attr aetion ittake s m o r e than o n esteP both in thesynehrono usa ndasyn ehr o n ou s Pro eedure to 90 to the stored Patte r n The thirdon e 15m or es oPhistieated w e wil l n ot m ention ithe rebe ea u s e itha s n oeo n e e r n with o ur dis e u ssio n B ased on the def initio n ofthe ba sinof attraetion the a uthor s of 12 Pr e se ntedthe follow ingm ainr esults l Cho o sesto r ed Pattern s atra ndom Ifd efinitio n 215 u seda nd let r be the ra diu s ofthe b asin ofattraetio n a ndthe first tyPe ba sin ofattraetio n 15de sir ed the n fo r suffieiently la rg en dePe nd ento nr 食 李 岁 12 Zr In 公甲二一 汁妞l一 下 4 刀 1 In刀 8 2 Choo se sto red patte r n s at random If these eond type ba sin ofattra etio n 15de sir ed an dd efintio n 215 u s ed the n 第 1 0 期章祥荪等 对Ho Pf ie ld神经网络的直接数学分析 13 tio n Ifa setof PPattern s 1 v e n its non 一orthoso n al degre e a r e 91 15defin edas The se are f d 二卜l 无 l 汽 Pa cityan alysis 广 命 inte re sting fo r the 9 r e s ults in thee a H opfieldn etwork d m a x 止 k But stillthey he ayily让epend o n the as sump tio n s ofPatte rn吞 orthogon alitya ndsuffieie n tly la rge s ealeofthen etwo rk It15 obvia u s thatin m o staPPl ieatio ns thestor ed Pat te r n s a r enotn e e e ssa rily m utu allyorthngo n aland the n etworkse ale 15 also lim ited In thisPaPer in steadofusingstatistie alnature m ethod whieh15 PoPula rin n eur alnet orkan alysisshown in 6 a nd 12 w eusestraightforwa rd m athematieala n alysis to studyasiv e n H O Pfiel d n etwork given siz e and giv enpatte r ns Inl the c aPaeityofthen etwork in terms of definit io n 1 a nd 215d is eu ssed In皿 the eone ePts ofa ss o eiative Patte r ns a ndsPuriou s Pat te rnsa r e introdu e ed whieh ha vebe ene盆PI or ed in 12一15 and w e ha vePro v ed thatin me pe 二 一g n 么 a 一 pur iou spa tte r n s wher e a 任 1 一 1 拼二1 一 P Fin a lly eonelusiona nd dise u ssio nare pre sentedin w Let 几denotethe H am m ing 正尹人 11 distan ee 科 oftwo patte n s 月an d 介 then 21吐了 d m ax 七 二 l 几 2 By the orem this definitio n l 无 1 p 忍笋朴 12 w e hav e aeaPaeity in te rmsofthe m odifiedve r sio nof definition1 The o rem Giv e n 1 夕户 a n d W in 4 o r 5 if 户一l d 一一二 二一一 戈 二 于 一犷 13 the n Ping yl 2 y a re fix ed Points ofthe m ap Pr o o于 Fo r a ny l l 令 W 艺 二 上习 I 勺 几 I 今I 户 户 艺 y竿 梦 y 脚一I 二上川 砚 李习 梦习 矛娜 刀梦斗 w he re a nd her eafter w e den ote 习 兹 习 as 艺 气 l 习 I for short Sin e e 1 1 Cap a eli t yan a lysi s 芬 o ra 9iv en H op 荟ield netwo rk 上艺 n口勺止 习 梦 J布 梦 川 粤习 梦 n 即勺 艺衅川 气l 衅 C o n sidera H oPfieldn etwo rk with ne u ro nsru n ning in the asyn ehrono u sPro e ed ur eorsynehron ousPr oe edur e Fo r a give n setofPattern s 少1 thee on ne etio n m atri笼 15 shown in 4 o r 5 G e nerally 1 p arenotn ee e ssa ry to bem utually orthogo n al T oestimate the deg r eeofas et of binaryv e etors wegive the follow ingde finition D e子 initio n 3 Fo r giv enPatterns 夕考 an d 夕几 二 告 恩 恩 生 一1 一 几 师 t the n w e ha ve E D then etwork Q o f notieing 13 sgn w e C o ro a ry w ith siz e The eaPaeity n i e thema ximum ofstablesto r ed Patterns at le ast n um be rP lS 理竺1 L IJ 二 属 l 10 五 5their quantitv n on一o rthogon al degre e w hieh to m e a suretheirorthogon al ISa t ela For giving some in sights into the eo n d itio n 13 somee x amPlesare Iistedin the fol lowins tab le N otie ethate ondition 13 gu ar anteesP Patternsto be stable in the w or stea s e In fa et theProofoftheorem 115 a w orstcas e l4 电子学报 19 92牟 P 洛 1125102 050100 二 5 U 且 n 万 2 U nl 月 曰n 口 d 二 吸OU 工才弓曰月吧 了 通 吸 扭0 二 O 一月 吧 g U O 100 600 1000 10000 50 2 50 500 6000 83 16 7 333 3 3 3 3 17 84 1 67 16 67 O a nalysis 0on eeanexPe et thatinPraetiee the r ewill be a Iittlela rg ernum be r 户tha n that11吕tedin abo v e tab le In aPPlie atio n fo r e x amPle ifw en e ed ehoo s e ome lette rs fr om26Englishlette rs to bePatte rn 吕 of ag ive n size HoPfield net w o rk w eea neomPote JI 介 fo r e v ery Pair of lette r s the n cho oseas ubsetof lette r s w 主th a s m u eh Iette r s a s Possible a nda吕 small d as Po s sibleto u s e the n etwo rk effeetively I n the followingdis e ussion w eu s e B g 卜 x 户 to den otethe im m ediate orone ste P c onverge nee ba sin that15 刀 f x 任S sgn w x 14 the fol lowing theor emgiv e s asuffeient e onditio n fo r avectorx belo ng to B勿 T he o r e m 2 If 13 15 satisfied 仓 必 then N x 任S x 习l x 口勺I P cB g 1 e N 刀 15 asubset eon v e rge nee ba sinB勿 de se riPtive to be cheeke d of the o n e 15 SteP W 01台 e alle d the re sidualeaPa eity of the n etwork w hen 户Patte rn sa re giv e n T hisdefinitio neomes from anobse rva tionthatthe Ia rg e rofther e sidualeaPa eity R the m oreextra Patter ns thateould be ad ded in the n etwork o r the large rof the c o nv e rge ne e ba sin r ad iu sof the existing to re dPatte rn s T oexplain this obse rvation m athematieal ly w e give the follow ingdefini tion al ldtheo t em D e 于ini七io n 6 The stability deg ree 无 of a Hopfield n etwork a s CAM w ith aset ofgive n Pat te r n s i defin ed a S 声 目了 e习 昌 匕 了 奋 bu t N 刀 15m ore uP Pro o于 Fir stlyw e hav e 三N by onlyn otieing 习 户 户一1 d 户上 艺l Pro o书 T o do the estimation w e the definitio nof 无 as follow s n 即勺l 梦 x P 一Px 口勺心 dify 无 之0 if夕l二一l the n 脚 whe r e n In 且 m ax 人 B gN g N 刀 15defin ed that for in 15 x 任B 一 刀 n otieing 笋 I g F r x 第 1 0 期章祥荪等 对Ho Pf i e l d神经网络的 接数学分析 l5 d 2无 hen e e if 介一2无 户一l J 2气 户 then x 习I 刀 x l p 口 1 e x 任N g N owrewrite 20 w e have 20 Pro o子 omitted F公 om the defin atio n of d w eeansee 几 一户一 P一l d 2 户 二一星 2户 tbat it15 a m e a su reme ntofthenon 一o rthogo n ality deg ree betw e e n a ndothe r P一l sto r ed Patterns 50 theorem 4 tellsus that the m a ximumradiusof B 15 r elated to 及 1 e the一 a r e J 15 the 一 e s th 凡宁 15 a ndviee ve r sa then 左 口in 翻 皿 m a义 无 B y g N 二 曰口 In U 二 1 In 臼 1 m二 会 圈 刹 Q E D Theo rem3giv e s o nea n ideahow to esti mate in thewo rst e a s e the radiusofthe O ne一stePe onve rgene e basinw he n户Patte rn a re determ ined W e hav edi吕 eus sed the e on eePtofstab ilitydegr e e now w e willgivem orean aly 515o n the m ax im umr ad iu sofon e一stePeo n vergen ee basin ofsinglePattern F ir st w e ha v e the followingdefination D e 子 in a七 io n 7 T hem ax im um ra diu s o f one 一ste P eonvergenee ba sin B y l 15defin ed as 斤宁 m ax 左 刀 任刀 刀 l二 1 户 About this defin atio n w eean first ha ve the follow ing re sult Lem m a 1 Sup po se y l a reaset ofstored Patte rn s the n forVI二1 P w e ha v e左 分 n 2 Pr o o于 Om itr ed Letd l l P 一 l 艺 J u From the 龟冷 lemm aabove w ee a n oren getthefol low ingthe 1 A s soeia七ive pat七 e rnsa ndspurious Pa七 tern s A simplea n alysis in 16 shows that if a H oPfieldn etwo rksto reso nlyone Pat te rn沙 o n e stor ed pa tern m odel tbe n一9 15 a15 0 a fix ed point C an w ee all 一 a sPu r io uo pattern 户If thete rm spu rious Patter n 15 u s ed it give s on ean idea thatthe n et w ork m ake sa mistake toeo nvergetoa w r o ng Pattern It15inte re sting to think that an e ur alnetwo rk 15 somew hat intell i ge nt a a hum an brain the n w he n it r ee og nize sa PhotograPh Pat tern it shouldals o r e eognize in some deg r e e the negativ eof the Photogr aph The onestored Patte r n m odel the n n atu rallyremem be r 一g o 一刀 15 notasPu riou s Patte r n bu ta nassoeiativ e Patte rn w hieh15 a ssoeiativelyr emembered byPatte r n 刀 1t15w ell known fo r the H oPfieldn et w o rk tbatifit remem ber s patte rns 万 t 刀 the n it e anals ore eogniz e s 一 1 一 一 From the o rem 1 tothe o rem 3 w e ha v e seenthat the eo nd itio n 13 plays ave ry imPo rra ntrole togu a r a ntee the network ele arlyremem be ring patte rns刀1 一 a nd their negative s Infaet ifw er ewrite l犷 s d 1 n 一 1 p一l 21 Or 尹 T卜 eo rem a r e the stor ed 4 S uppose 1 户一l Y 2 一 5 0 w e have sgn W 二 宁 v i 1 n A nd it 5 e a sy to see thatwe ea nalso Pro ve sgn W 一y 一y宁 v i x n 50 a nd一少 a r e fix edpoin tsofthen et wo rk Q E D From the for功e r lemm a w e w ill e a sily get T he o re m 5 Suppose 1 2 尸a rea g ro u p o fpatte rn s 歹 拜 a 抖 whe r ea 任 l 一l 1 户 京 侄 L et J l n 一 l 卫 J t de note d 二 口 勺耳 名 歹梦 d d二 V 拌 无 1 户 拌特七 av 忍I IO 蚕 r川 h n 一 乡 n 一 fiX ed V 了 2 Let l 2 n 言 I n n 一 1 艺了 de n ote 才 脚勺七 r e a Points ofthen etwo rk Pro o于 V l n W 习 了气t 学 梦 才 了 石 Y 凡二1 p 料斗左 a nd w e hav 忍l 含 l L 一 才 n 一 妙 h二 一 么 二S 自 a 上艺 nl勺l 习 y了y罗 臼一压丹 属 青急 寺急 寺急 习衅对 脚一扭三 y 兮艺 梦 I 勺口 习 t l fl习二 一 1 L布勺臼了勺IJ nL 杯二 习 d t一 几勺邵 罗 李 n 一 l a re fix edpoints of the n etwork Pr o o于 If o nl丫 w enote that and 一 气 二1 Pgiv e thesamee ontributio n to the weishtm atrix w eeanu se 一 一 ins te ad ofthe 拼 一th patte rn and w e wil lg et thes ame w eight m atrix In othe r w ords w e getthe samen etwork bya rbitra rilyeha nging the s主gn softhe p attern s H e ne e ifw er egard 夕 夕 2 astheo rigin al patte r ns the Pro ofPro ee s s of this the or em wil lbe the s amea softhe lem m a 汀 曰L 艺 y r 日飞 nL J芯习 少 习 J d 介勺口 门 一 弄 Jn儿 pp 习 梦 习 y梦 乍 鑫补 弃 一 自 介 口 一I I V t Q E D Co ne u sio n a nd dis e u s sio n In ste adofu singstatistie alnatu re m e 今 一 l J一 一 l 一 刀 thod field 甲7 e a n alys e the ProPe rtie s ofthe H oP n etwork su ehas it eaPa eity eonv er 习片 口一l 一七 nL 茹二l 习 夕梦艺d 几勺即 石 ge n e e a ss o eiativ ea nd usingstr aightforwa rd sPu rio u sPatte rn s by an alysis Or W OtstCase 第 1 0 期 章祥荪等 对Ho Pf i el d 神经网络的直接数学分析 l7 a n alysis It seems to u sthatsu eh kind of analvtie alte ehnique 15 effe etiv e an d the n 15 as uPPleme ntto thetradition al teehniques s e e 6 In thisPaPerwe hav e given suffieie nt e ond itio n s se e the orem 1 a ndeond ition 13 with whieh the to r ed Patte r n swil lbe re e a 1ledby the n etwork D u ring the dise u s sio n somen eweon e ePt sucha sthenon 一orthog o nal degr eeofasetofPatte r ns 人 一n e ighbou r ho odin one一stePeonve rge n e e ba sin w e r e introdu eed theyw illbe useful in Praetie al aPPlie ation s It15inte resting that if then etworkre m ebers 1 it noto nlyautomarieal ly o r assoeiatively r emem be r s 一 一 but also Pr obably r emem berssome lin ea r eom bin ation 一I ike ofthesto r edPa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论