




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分式一、从分数到分式:(1).分式定义:一般地,形如的式子叫做分式,其中A和B均为整式,B 中含有字母。整式和分式称为有理式。注意:判断代数式是否是分式时不需要化简。例:下列各式,0中,是分式的有_ _;是整式的有_ _;是有理式的有_ _练习:1.下列各式:;.其中分式有 。2.在代数式,中,分式的个数是 。(2)分式有意义的条件:分母不等于0. 例:下列分式,当取何值时有意义(1); (2)练习:1.当_时,分式有意义.2.当_时,分式无意义.3.当m_时,分式有意义.4.下列各式中,不论字母x取何值时分式都有意义的是( )A. B. C. D.5.下列各式中,无论取何值,分式都有意义的是( ) A B C D7使分式无意义,x的取值是( ) A0 B1 C D8.应用题:一项工程,甲队独做需a天完成,乙队独做需b天完成,问甲、乙两队合作,需_天完成. (3)分式的值为0:分子等于0,分母不等于0例:1.当x=_时,分式的值为0,2.当_时,分式的值为零3.当_时,分式的值为正;当_时,分式的值为负4下列各式中,可能取值为零的是( ) A B C D练习:1分式,当_时,分式有意义;当_时,分式的值为零2.若分式的值为零,则x的值为 3.当_时,分式的值为零4.若分式的值为负,则x的取值是( )A.x3且x0 B.x3 C.x3 D.x3且x05分式中,当时,下列结论正确的是( ) A分式的值为零; B分式无意义 C若时,分式的值为零; D若时,分式的值为零6下列各式中,可能取值为零的是( ) A B C D7.已知,取哪些值时:(1)的值是正数;(2)的值是负数;(3)的值是零;(4)分式无意义8.若分式的值是正数、负数、0时,求的取值范围9.已知,求的值. 10已知,求的值二、分式的基本性质:分式的分子或分母同时乘以或除以一个不等于0的整式,分式的值不变。例:1.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:= =2不改变分式的值,使下列分式的分子与分母都不含“-”号。1.= 2.= 3.= 4. =3.填空:(1); (2)4.当a_时,成立.5.对有理数x,下列结论中一定正确的是( )A.分式的分子与分母同乘以|x|,分式的值不变B.分式的分子与分母同乘以x2,分式的值不变C.分式的分子与分母同乘以|x+2|,分式的值不变D.分式的分子与分母同乘以x2+1,分式的值不变6.对于分式,总有( )A. B.(a1) C. D.7.填空:(1); (2).分式约分:化简分式(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分(2)分式约分的依据:分式的基本性质(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式分式约分的基本步骤:1 分子分母能进行因式分解的式子分解因式。 2 找出分子分母的最大公因式。 3 分子分母同时除以最大公因式。 4 最间分式的分子分母不含有公因式或公因数。例:1.找出下列分式中分子分母的公因式: 2把下列分式化为最简分式: =_ =_ =_ =_= 练习1分式,中是最简分式的有( )A1个 B2个 C3个 D4个2.下列分式中是最简分式是( )A . B . C. D. 3.约分:(1) (2) (3)4.约分:(1) (2)5.不改变分式的值,使分式的分子、分母不含负号.(1)= (2)=6.化简求值:(1)其中。 (2)其中分式通分:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。步骤:先求出几个异分母分式的分母的最简公分母,作为它们的公分母,把原来的各分式化成用这个公分母做分母的分式。找最简公分母的步骤:(1)把分式的分子与分母分解因式;(2)取各分式的分母中系数最小公倍数;(3)各分式的分母中所有字母或因式都要取到;(4)相同字母(或因式)的幂取指数最大的;(5)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。例:1.求分式的最简公分母。 2. 求分式与的最简公分母。3. 通分:(1); (2)(3), (4)练习:1、通分: (3)(4) (5)2求下列各组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购灶具合同范本
- 小企业租赁合同范本
- 商贸食品销售合同范本
- 保时捷售车合同范本
- 租赁合同范本违约约定
- 医用耗材寄售合同范本
- 第26讲 与圆有关的计算 2025年中考数学一轮复习讲练测(广东专用)
- 2025股权转让合同 有限责任公司股权转让协议
- 雇佣牛倌合同范本
- 2025标准租房合同模板CC
- 中华民族共同体概论教案第二讲-树立正确的中华民族历史观
- 国家开放大学《幼儿园社会教育专题》形考作业1-4参考答案
- 人工智能训练师(初级-五级)职业技能鉴定理论考试题库-下(判断题)
- 《正常心电图的识别》课件
- 儿童游乐场装修拆除施工方案
- 手术患者确认制度
- 深度学习及自动驾驶应用 课件 第5章 基于CNN的自动驾驶目标检测理论与实践
- 2023-2024学年广东省深圳市宝安区八年级(下)期末英语试卷
- 双碳全景系列培训第一章碳达峰、碳中和
- 山东淄博博山猕猴桃产业发展现状与对策建议
- 人教版大单元教学设计-小学四年级数学下册第五单元三角形
评论
0/150
提交评论