概率论试题及答案.doc_第1页
概率论试题及答案.doc_第2页
概率论试题及答案.doc_第3页
概率论试题及答案.doc_第4页
概率论试题及答案.doc_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

螆For personal use only in study and research; not for commercial use螄芃试卷一艿螈一、填空(每小题2分,共10分)膆设是三个随机事件,则至少发生两个可表示为_。蚃. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示_。肀已知互斥的两个事件满足,则_。薅设为两个随机事件,则_。芄设是三个随机事件,、,则至少发生一个的概率为_。肂螀二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分)蚆1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则( )。莃(A) 取到2只红球 (B) 取到1只白球 薂(C) 没有取到白球 (D) 至少取到1只红球薀2对掷一枚硬币的试验, “出现正面”称为( )。蚈(A) 随机事件(B) 必然事件螅(C) 不可能事件(D) 样本空间羁3. 设A、B为随机事件,则( )。芁(A) A (B) B 蒅(C) AB (D) 袄4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是( )。莀(A) 与互斥(B) 与不互斥羁(C) (D) 薆5. 设为两随机事件,且,则下列式子正确的是( )。芆(A) (B) 肄(C) (D) 蒈6. 设相互独立,则( )。蚈(A) (B) 莄(C) (D) 00/35)=(x/35)-(-x/35)=0.9JI蒃7.设是三个随机事件,且有,则( )。 芈(A) 0.1(B) 0.6蒅(C) 0.8(D) 00/35)=(x/35)-(-x/35)=0.9JI0.7蒃8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为( )。羂(A) p2(1 p)3 (B) 4 p (1 p)3 羈 (C) 5 p 2(1 p)3 (D) 4 p 2(1 p)3 蒇9. 设A、B为两随机事件,且,则下列式子正确的是( )。袅(A) (B) 莂(C) (D) 虿10. 设事件A与B同时发生时,事件C一定发生,则( )。薈(A) P(A B) = P (C) (B) P (A) + P (B) P (C) 1羃(C) P (A) + P (B) P (C) 1 (D) P (A) + P (B) P (C)螁三、计算与应用题(每小题8分,共64分)葿1. 袋中装有5个白球,3个黑球。从中一次任取两个。莅求取到的两个球颜色不同的概率。芆膀2. 10把钥匙有3把能把门锁打开。今任取两把。腿求能打开门的概率。莇蒄3. 一间宿舍住有6位同学,袄求他们中有4个人的生日在同一个月份概率。羀蒈4. 50个产品中有46个合格品与4个次品,从中一次抽取3个,薃求至少取到一个次品的概率。莃蚀5. 加工某种零件,需经过三道工序,假定第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且任何一道工序是否出次品与其它各道工序无关。芅求该种零件的次品率。袅螃6. 已知某品的合格率为0.95,而合格品中的一级品率为0.65。蒁求该产品的一级品率。芇羃7. 一箱产品共100件,其中次品个数从0到2是等可能的。开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收。若已知该箱产品已通过验收,膂求其中确实没有次品的概率。膁莈8. 某厂的产品,按甲工艺加工,按乙工艺加工,两种工艺加工出来的产品的合格率分别为0.8与0.9。现从该厂的产品中有放回地取5件来检验,莆求其中最多有一件次品的概率。薁羁四、证明题(共6分)膆设, 。证明 蒄肁莈试卷一 芇参考答案薂蒀一、填空膈1. 或 芈2. 出现的点数恰为5羅3. 膄与互斥螄 则 羁4. 0.6羈蒈薄肂莁故 袈芅肄5. 葿至少发生一个,即为莇又由 得 肅故 袁袂螆螅二、单项选择羃1羀2. A膆3. A蒆 利用集合的运算性质可得.羄4肈与互斥衿芆故 螁5蒁芈羆故 袃6蕿相互独立螈蒃羄羂膇7.膃螁 且 肀薇则 羄螃膈8. 肆蚄9. B袄薁10. B 蒅蒄蚂故 P (A) + P (B) P (C) 1 虿三、计算与应用题腿1. 解:膅设 表示“取到的两球颜色不同”,则蚃而样本点总数肁故 薈2. 解:羅设 表示“能把门锁打开”,则,而蒀故 膀3. 解:羇设 表示“有4个人的生日在同一月份”,则蚅而样本点总数为薂故 芈4. 解:蒇设 表示“至少取到一个次品”,因其较复杂,考虑逆事件=“没有取到次品”蒆则 包含的样本点数为。而样本点总数为薃故 蚀5. 解:袆设 “任取一个零件为次品”膆由题意要求,但较复杂,考虑逆事件“任取一个零件为正品”,表示通过三道工序都合格,莀则 蝿于是 芆6. 解:袇设 表示“产品是一极品”,表示“产品是合格品”蒂显然,则膁于是 罿即 该产品的一级品率为莃7. 解:薃设 “箱中有件次品”,由题设,有,芀又设 “该箱产品通过验收”,由全概率公式,有莈膃莀于是 莈袈袄莂8. 解:螀依题意,该厂产品的合格率为,芇于是,次品率为 蚄设 表示“有放回取5件,最多取到一件次品”蒃则 衿蚆莄四、证明题芁证明膁 , ,肆由概率的性质知 则肅节又 荿且 蝿袅故 莃蒈艿薆膁螀蚈试卷二莆膂一、填空(每小题2分,共10分)衿1. 若随机变量 的概率分布为 ,则_。肇2. 设随机变量 ,且 ,则_。肆3. 设随机变量 ,则 _。芄4. 设随机变量 ,则 _。芁5. 若随机变量的概率分布为蒇袇肁荿羆芃膂蒈莅则 _。肃膄二、单项选择(每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分)袀1. 设 与 分别是两个随机变量的分布函数,为使 是某一随机变量的分布函数,在下列给定的各组数值中应取( )。聿(A) (B) 螄(C) (D) 羁2. 设随机变量的概率密度为,则( )。羈(A) (B) 蒈(C) (D) 薄3.下列函数为随机变量分布密度的是( )。肂(A) (B) 莁(C) (D) 袈4.下列函数为随机变量分布密度的是( )。芅(A) (B) 肄(C) (D) 葿5. 设随机变量的概率密度为,则的概率密度为( )。莇(A) (B) 肅(C) (D) 袁6. 设服从二项分布,则( )。袂(A) (B) 螆(C) (D) 螅7. 设,则( )。羃(A) (B) 羀(C) (D) 膆8设随机变量的分布密度为 , 则( )。蒆(A) 2(B) 1羄(C) 1/2(D) 4肈9对随机变量来说,如果,则可断定不服从( )。衿(A) 二项分布(B) 指数分布芆(C) 正态分布(D) 泊松分布螁10设为服从正态分布的随机变量,则 ( )。蒁(A) 9 (B) 6 芈(C) 4 (D) -3 羆袃三、计算与应用题(每小题8分,共64分)蕿1. 盒内有12个乒乓球,其中9个是新球,3个是旧球。采取不放回抽取,每次取一个,直到取到新球为止。螈求抽取次数的概率分布。蒃羄2. 车间中有6名工人在各自独立的工作,已知每个人在1小时内有12分钟需用小吊车。羂求(1)在同一时刻需用小吊车人数的最可能值是多少?膇(2)若车间中仅有2台小吊车,则因小吊车不够而耽误工作的概率是多少?膃螁3. 某种电子元件的寿命是随机变量,其概率密度为肀薇求(1)常数;羄(2)若将3个这种元件串联在一条线路上,试计算该线路使用150小时后仍能正常工作的概率。螃膈4. 某种电池的寿命(单位:小时)是一个随机变量,且。肆求(1)这样的电池寿命在250小时以上的概率;蚄(2),使电池寿命在内的概率不小于0.9。袄薁5. 设随机变量。蒅求 概率密度。蒄蚂6. 若随机变量服从泊松分布,即,且知。虿求 。腿膅7. 设随机变量的概率密度为。蚃求 和。肁薈8. 一汽车沿一街道行使,需要通过三个均没有红绿灯信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,求红或绿两种信号灯显示的时间相等。以表示该汽车未遇红灯而连续通过的路口数。羅求(1)的概率分布;蒀(2)。膀羇四、证明题(共6分)蚅设随机变量服从参数为2的指数分布。薂证明:在区间上,服从均匀分布。芈蒇蒆薃蚀袆膆试卷二莀参考答案蝿一、填空芆1. 6袇由概率分布的性质有 蒂即 ,膁得 。罿2. 莃,则薃芀莈3. 0.5膃莀莈袈4. 袄莂5. 0.25螀由题设,可设芇蚄蒃即衿蚆0莄1芁膁0.5肆0.5肅则 节荿蝿袅二、单项选择莃1. ()蒈由分布函数的性质,知 艿则 ,经验证只有满足,选薆2. ()膁由概率密度的性质,有 螀3. ()蚈由概率密度的性质,有莆4. ()膂由密度函数的性质,有 衿5. ()肇是单减函数,其反函数为 ,求导数得 肆 由公式,的密度为 芄6. ()芁由已知服从二项分布,则蒇又由方差的性质知,袇7. ()肁荿羆于是 芃 8. (A) 由正态分布密度的定义,有 膂 蒈 9. (D) 莅肃如果时,只能选择泊松分布.膄10. (D)袀 X为服从正态分布N (-1, 2), EX = -1 聿 E(2X - 1) = -3螄三、计算与应用题羁1. 解:羈设为抽取的次数蒈 只有个旧球,所以的可能取值为:薄由古典概型,有肂莁袈芅肄则葿莇1肅2袁3袂4螆螅羃羀蚇羇2. 解:蒆设 表示同一时刻需用小吊车的人数,则是一随机变量,由题意有,薀,于是莁(1)的最可能值为 ,即概率达到最大的螈(2)芃羃螀蒈3. 解:莄(1)由 可得 肁(2)串联线路正常工作的充要条件是每个元件都能正常工作,而这里三个元件的工作是相互独立的,因此,若用表示“线路正常工作”,则膀羅而 莆故 蒃4. 解:虿 蚅(1)膃薂肈(查正态分布表)蒅芅(2)由题意 蚀蒈膆芆即 查表得 。肂5. 解:羇对应的函数单调增加,其反函数为,求导数得,羆又由题设知 肃故由公式知: 膁6. 解:薁,则蚆而膅由题设知 蒃即 肀可得 莇故 羂查泊松分布表得,蚂葿膇7. 解:肃由数学期望的定义知,螀而 衿故 袈8. 解:肅(1)的可能取值为且由题意,可得肂莈蚈袂芁即螇莈0羄1薃2蒁3袅羅蚁袀薅螂(2)由离散型随机变量函数的数学期望,有螀艿莅袄膂四、证明题蝿证明:肆由已知 则袅芁又由 得 连续,单调,存在反函数膈 且 袆当时, 则 蚂故 蚃薈薇即 螄螁芁莇袅袀试卷三蚀一、填空(请将正确答案直接填在横线上。每小题 2分,共10分)肇1. 设二维随机变量的联合分布律为,蚃节膀螈蚄莀蕿薈螅螃羈则 _,_.芈2. 设随机变量和相互独立,其概率分布分别为,薃袁莈螅薄罿袇蒅蚅莂薁芆蒃蒀羀羆蒄则 _.袃3. 若随机变量与相互独立,且,荿则 服从_分布.螆4. 已知与相互独立同分布,且薆羁蝿蒇莃莃芈则 _.芇5. 设随机变量的数学期望为、方差,则由切比雪夫不等式有蒄_.蒂蚇二、单项选择(在每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分)羇1. 若二维随机变量的联合概率密度为 ,则系数( ).蒆(A) (B) 薀(C) (D) 莁2. 设两个相互独立的随机变量和分别服从正态分布和,则下列结论正确的是( ).螈(A) (B) 芃(C) (D) 羃3. 设随机向量(X , Y)的联合分布密度为, 则( ).螀(A) (X , Y) 服从指数分布(B) X与Y不独立 蒈(C) X与Y相互独立(D) cov(X , Y) 0莄4. 设随机变量相互独立且都服从区间0,1上的均匀分布,则下列随机变量中服从均匀分布的有( ).肁(A) (B) 膀(C) (D) 羅5. 设随机变量与随机变量相互独立且同分布, 且莆, 则下列各式中成立的是( ).蒃(A) (B) (C) (D) 虿6设随机变量的期望与方差都存在, 则下列各式中成立的是( ).蚅(A) (B) 膃(C) (D) 薂7. 若随机变量是的线性函数,且随机变量存在数学期望与方差,则与的相关系数( ).肈(A) (B) (C) (D) 蒅8. 设是二维随机变量,则随机变量与不相关的充要条件是( ).芅(A) 蚀(B) 蒈(C) 膆(D) 芆9. 设是个相互独立同分布的随机变量,肂则对于,有( ).羇(A) (B) 羆(C) (D) 肃10. 设,为独立同分布随机变量序列,且Xi ( i = 1,2,)服从参数为的指数分布,正态分布N ( 0, 1 ) 的密度函数为, 则( ).膁 薁三、计算与应用题(每小题8分,共64分)蚆1. 将2个球随机地放入3个盒子,设表示第一个盒子内放入的球数,表示有球的盒子个数.膅求二维随机变量的联合概率分布.蒃2. 设二维随机变量的联合概率密度为肀莇(1)确定的值;羂(2)求 .蚂3. 设的联合密度为葿膇(1)求边缘密度和;肃(2)判断与是否相互独立.螀4. 设的联合密度为衿袈求的概率密度.肅5. 设,且与相互独立.肂求(1)的联合概率密度;莈(2);蚈(3).袂6. 设的联合概率密度为芁螇求及.莈7. 对敌人阵地进行100次炮击。每次炮击命中目标的炮弹的数学期望是4,标准差是1.5.羄求100次炮击中有380至420课炮弹命中目标的概率.薃8. 抽样检查产品质量时,如果发现次品数多于10个,则认为这批产品不能接受.蒁问应检查多少个产品才能使次品率为10%的这批产品不被接受的概率达0.9.袅四、证明题(共6分)羅设随机变量的数学期望存在,证明随机变量与任一常数的协方差是零.蒃蚂莇薄薂肂试卷三膈参考解答蚆一、填空羄1. 薁由联合分布律的性质及联合分布与边缘分布的关系得袈蚇 肃2. 羀蚈蒅3. 蒅相互独立的正态变量之和仍服从正态分布莀且,荿,薆薃4. 肃腿蚇蚂5. 蒂衿蒅肄二、单项选择羂1. (B)薀由 蒆即 膂选择(B).莁莀2. (B)薇由题设可知,薅故将标准化得 螁肁莅蚃选择(B).膀3. (C)薇莆选择(C).螂4. (C)虿随机变量相互独立且都服从区间0,1上的均匀分布, 则芇蒈选择(C).膄5. (A)莃肈选择(A).芅6. (A)节 由期望的性质知螂螈选择(A).芆7. (D)蚅膁薈莈螃薁选择(D).艿8. (B)膅与不相关的充要条件是膆即 肀则 聿选择(B).芆9. (C)芄 蒀 螀芈选择(C).莂10. (A)膃Xi ( i = 1,2,)服从参数为的指数分布,则薀肅故 螅薂选择(A).芀三、计算与应用题膇1. 解袃显然的可能取值为;的可能取值为羂注意到将个球随机的放入个盒子共有种放法,则有螇膈芅蒁蒇即 的联合分布律为羅莄袀芇肇蒂芀羈肈袅蝿螈袅羃2. 解莃(1)由概率密度的性质有葿羇芅可得 袂(2)设,则腿螄蒄芁罿3. 解袆(1) 薂蚁即 蚀 即 ,(2)当时故随机变量与不相互独立.4. 解先求的分布函数显然,随机变量的取值不会为负,因此当 时,当 时,故 的概率密度为5. 解(1) 与相互独立 的联合密度为(2)(3)6. 解于是 由对称性 故 .7. 解设 表示第次炮击命中目标的炮弹数,由题设,有 ,则次炮击命中目标的炮弹数 ,因 相互独立,同分布,则由中心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论