




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生物统计学(Biostatistics) 是以概率理论为基础,研究生命科学中随机现象规律性的应用数学科学。涉及到医学科学研究的设计、资料搜集、归纳、分析与解释的一门应用性基础学科、二、科学研究的基本程序 1、提出一个欲待研究的问题:2、科学研究设计:专业设计、统计学设计:统计学设计(statistical design):是指用统计学原理对研究的全过程所作出的周密合理的统筹安排,如确定研究对象,拟定研究因素及其分配,如何执行随机、对照与重复的统计学原则,如何观察与度量效应,以及数据收集、整理与分析的方法,通过合理的、系统的安排,达到控制系统误差,以尽可能少的资源消耗(最小的人力、物力、财力和时间)获取准确可靠的信息资料及可信的结论,使效益最大化。3、获取试验与观察的资料,又称为搜集资料4、数据审核与计算机录入5、分析资料 描述性统计(descriptive statistics)是指用统计指标、统计图、统计表等方法,对数据的特征及其分布规律进行检测与描述。 统计推断(inferential statistics)是通过随机样本信息推断总体特征的过程。统计推断又包括置信区间(confidence interval)估计与统计学假设检验(hypothesis test)。统计学分析过程按变量的多寡可分为单变量分析与多重变量分析。 6、分析结果的合理解释(Explication of results): 研究中应注意的问题1、统计学结论的正确与否取决于统计学分析数据的真实性、准确性以及研究样本对研究总体的代表性。 2、尽可能地控制系统误差是统计分析数据真实性、准确性的保证。3、随机化抽样是确保样本数据对研究总体具有代表性的重要过程。变量variable:在总体中,个体的许多属性(如年龄、性别、血浆胆固醇等)存在变异性,统计学上将反映个体属性变异性特征的指标称为随机变量(Random variable),简称变量; 针对不同类型的属性,需采用不同类型的变量,因而产生不同类型的资料。总体(Population)与样本(Sample):根据研究目的所确定的具有相同性质的观察单位的集合成为总体(母体)。从同一总体中通过随机化过程抽取的部分观察单位称为样本(子样)。抽样(Sampling)从研究总体中通过一定原则获取样本的过程样本含量(Sample size).样本中所包含的基本研究单位数量同质(Homogeneity):同一总体中的每一个体都具有相同性质类别的特征。变异(Variation):同一总体中的各个体间的差异性。随机化(randomization ):能使总体中每一观察单位均能以同等机会(概率)进入样本,或分配到实验组与对照组的过程。抽样误差(Sampling Error):由于总体中各个体间存在变异性,因抽样过程的随机性所至样本的统计量与总体的参数不等,或多个样本的统计量存在差异性称为抽样误差。概率(Probability):描述随机事件发生的可能性的度量。随机事件A的发生概率记为 P(A)。概率的取值在0 到 1之间,若P=1或P=0的事件称为必然事件,若0P1 的事件为随机事件。概率接近于0(如P50例):z近似,t更精确配对设计资料均数的比较1.异源配对:将受试对象按某些混杂因素(如性别、年龄、窝别等)配成对子,然后将每对中的两个个体随机分配给两种处理(如处理组与对照组),对子成对出现,仅对对子中的两个体进行随机。2. 同源配对(或自身配对):同一受试对象作两次不同的处理(如甲法、乙法),或一种处理的前后比较。优点:配对设计减少了比较对子间的个体差异。 特点:资料成对(对子编号),利用每对数据间的差值(d)作比较 , n=n-1完全随机设计两总体均数的比较实验设计:用完全随机设计(completely random design) 方法,把受试对象随机分为两组,分别给予不同处理,然后比较独立的两组样本均数。各组对象数不必严格相同。但两组例数相等,可提高检验效能。两总体均数的Z 检验当总体方差已知时,应使用Z检验大样本(如两组例数均50例)情况下,尽管总体方差未知,也可用样本方差取代总体方差,用Z检验作近似计算两总体方差间的差异性检验自由度n1-1,n2-1使用双侧的原因:计算F值时,较大方差S12可以作为分子,也可作为分母。注意:一般的方差分析,只采用单侧检验对出现方差不齐情况时统计学应对策略1.采用不以来总体分布的非参数检验2.对原变量合适数学变换,使方差变为齐性方差3.当各组方差相差悬殊时课采用Welch加权方差分析总体方差齐同情况下的t检验:自由度n1+n2-2均数的标准误:方差不齐时t检验卡方检验Chi-square Test卡方检验是对分类资料进行统计推断分析的一种方法。它可以用来比较两个或多个率的差异(同质性检验)或检验两个指标是否关联(关联性检验)或判断列联表的边际分布是否一致(一致性检验)等。理论频数:卡方检验的分类A) 22 四格表:(1)同质性检验-比较两个率;(2)关联性检验B)2k 列联表:(1)同质性检验-比较 k 个率;(2)关联性检验;(3)趋势分析C)RC 列联表 :关联性检验:双向无序,单向有序,双向有序D) kk 配对分类数据的卡方检验:1) 一致性检验(reliability);2) 对称性检验(symmetry)卡方界值X2(0.05,1)3.841自由度df=(行数-1)(列数-1)=1四格表专用公式(Pearson公式)连续性校正公式Yates:当样本含量40,如有一个格子理论频数小于5时使用四格表的精确概率Fisher exact若有理论频数小于1或n40时,尤其时用其它方法计算概率接近检验水平时使用四格表卡方检验方法的选择原则对于成组分类数据的 22 表: a) n 40,且所有E 5 - Pearson (一般公式) b) n 40,但有 1E5 -Yates(校正公式) c) n 40 或有E1或 p- Fishers exact(精确算法)1) 左单侧检验: H0: 1 =2 vs H1: 1 23) 双侧检验 : H0: 1 = 2 vs H1: 1 2左侧概率+右侧概率原表格概率=1行列表卡方检验:RC表有序分类型数据的卡方检验The Chi-square test for ordinal categorical data1) 有序分类变量的量化方法(1)等距离法(2)非等距离法(3)秩得分法(rank scores):第i行秩得分:第j行秩得分:(4)Ridit 得分法(ridit scores):在秩得分的基础上进行:r2i=r1i/n;c2i=c1i/n(5)调整Ridit 得分法(modridit scores):在秩得分的基础上进行:r3i=r1i/(n1);c3i=c1i/(n1)2) 标准化得分(样本得分n个样本得分均值)/得分标准差配比方表同质与对称性检验kk 配对分类数据的卡方检验1) 一致性检验(reliability)一致性检验方法-kappa 检验2)对称性检验(symmetry)(a) McNemar 检验-2 2 表配对四格表公式: b+c40时使用 b+c50mg”等 )缺点:方法比较粗糙,对于符合参数检验条件者,采用非参数检验会损失部分信息,其检验效能较低;样本含量较大时,两者结论常相同应用非参数检验的情况:1.不满足正态和方差齐性条件的小样本资料;2.总体分布类型不明的小样本资料;3.一端或二端是不确定数值(如0.002、65等)的资料(必选);4.单向有序列联表资料;5. 各种资料的初步分析。秩次(tie)将数值变量值从小到大,或等级变量值从弱到强所排列的序号。两个独立样本检验Wilcoxon秩和检验Wilcoxon rank sum test1区间(计量)数据的两样本比较:符合参数条件时,采用两样本均数的t检验2有序(等级)数据的两样本比较常错误采用 卡方检验名义数据的两样本比较,采用率或构成比的卡方 检验K个独立样本检验完全随机设计多个样本比较的Kruskal-Wallis H检验1.区间(计量)数据的多个样本比较 Kruskal-Wallis H检验;如果满足参数条件,这类资料一般作完全随机设计ANOVAK个相关样本检验:随机区组设计多个样本比较的Friedman M检验等级相关:应用:两个样本的相关分析,当两个变量不服从正态分布时,可以采用等级相关分析。医学研究的统计学设计研究设计的基本类型1. 实验(Experiment)研究 (干预) 受试对象:人临床试验(clinical trial) 动物动物实验( animal experiment )临床试验:治疗临床疗效实验 预防社区干预实验(community intervention trial) 2. 调查(Survey)研究 (无干预) 被动地观察、如实记录研究设计的重要性设计好: (1)既省又可靠;(2)可估计和控制误差;(3)获取多方面知识设计不好:(1)杂乱无章、虽多犹无;(2)只能罗列现象、无规律可言两种研究类型的区别与联系实验研究调查研究干预因素施加不施加研究类型推断性描述性研究范围较小大研究地点实验室或现场现场控制误差较好较差相互关系对调查加以验证为实验提供线索研究设计的基本要素(一)处理因素( treatment factor )(二)受试对象( subject )(三)实验效应( experimental effect )1. 客观性:主观指标和客观指标。2. 精确性: 准确度(accuracy)或真实性(validity)观察值与真实值的接近程度,受系统误差的影响。常用指标:灵敏度、特异度 精密度(precision)或可靠性(reliabiliy)或重复性(repeatability)重复观察时观察值与其均值的接近程度,受随机误差的影响。常用指标:Kappa值、一致百分率实验设计的基本原则1.随机化原则(randomization);2.对照原则 (control);3.重复原则 (replication):重复(replication)是指各处理组与对照组要有一定样本含量(sample sizes)。几种不同设计类型的随机化分组:(1)完全随机实验设计:将观察单位完全随机地分配到实验组与对照组或几个对比组中去。(2)配对实验设计paired experiment design: 1.同源配对:同一受试对象用两种不同的实验方法;受试对象自身实验前后的对比 。2.非同源配对:将具有相同条件的实验对象配成对子。(3)随机区组实验设计 (randomized block experiment design) (1)将多方面条件相近的受试对象配成一组,称作一个区组(block)。 (2)每个区组的受试对象个数 取决于 对比组组数。 (3) 每个区组的受试对象被随机地分配到各对比组中。 配对设计的扩展,故又称配伍组设计(4)交叉设计:(cross-over experiment design)每个受试者随机地在两个或多个不同试验阶段分别接受指定的处理(试验药或对照药)。 同源配对设计的扩展 优点:(1)控制个体间的差异,(2)减少受试者人数。对照的形式:包括:空白对照、实验对照、标准对照、自身对照、相互对照 、历史对照设立对照应注意的事项(1)均衡:对照组与实验组 除研究因素外,其他因素应尽可能相同(2)同步:对照组与实验组 应处于同一空间和同一时间常用的抽样方法 1.单纯随机抽样simple random sampling:先将总体的全部观察对象编号,再利用抽签或随机数字表的方法随机抽取观察对象组成样本。最基本的抽样方法2. 系统抽样systematic sampling:按照一定的顺序,机械地每隔若干个单位抽取一个单位的方法。又称间隔抽样,机械抽样3.分层抽样stratified sampling:先按某种特征将总体分为若干组别、类型或区域等(统称为“层”),再用随机抽样的方法从每个子总体中抽取样本。要求“层内齐同,层间不同”。4. 整群抽样cluster sampling:按群体而不是按个体抽取观察单位的抽样方法。各种抽样方法的抽样误差顺序:分层系统单纯整群误差( error ):实测值与真值之差。系统误差(systematic error):在一定实验条件下,由某种未发现或未确定的因素所引起观测值具有方向性和系统性的误差,又称偏倚(bias)。(三)系统误差类型及其控制 类 型 发生阶段 控 制 选择偏倚 设 计 随机化 测量偏倚 实 施 盲 法 混杂偏倚 分 析 配对、分层 样本含量的估计与检验效能样本含量(sample size):为了保证研究结论的可靠性,确定的实验研究或调查研究所需要的最低观察对象的数量。检验效能(power):也叫把握度,即1-(第二类错误的概率)。如果两总体参数实际有差异(H1成立),按a水准,假设检验能发现这种差异的能力(真阳性)。通常要求达到80%或90%(即=0.2 或=0.1 ),不得低于75%。样本含量的影响因素1. 检验水准:低,则n 高 2. 检验效能1-:(1-)高,则n 高,(1-) 0.75,通常取0.8或0.9。3. 客观差异 (delta),即比较总体参数间的差值(如m1-m2, p1-p2)。 低,则n 高 4.总体标准差、总体平均数(或总体率),这里主要指离散程度指标。 高,则n 高个体间标准差越小或样本含量越大,检验效能越大; s小或n大 均数对应的概率密度曲线(m,s 2/n)瘦高 检验效能大第一类错误的概率越大,检验效能越大客观差异越大,检验效能越大样本含量的估计1.均数抽样2.率的抽样3. 样本均数与总体均数比较 4. 两样本均数比较5. 配对计量资料比较d:每对观察对象差值的标准差6. 两样本率比较1和2:分别表示两组的总体率c :两组的合并率7. 配对计数资料比较:+-=b/(a+b), -+=c/(a+c),c=(+-+-+) /2检验效能及其计算出现“阴性”结果有两种可能:(1)(1-)较大,被比较的指标间很可能无差别。(2)(1-)较小,所比较的指标间很可能差别有显著性,但由于样本含量不足而未能发现。Z查z值表(1-)Z的计算 1.两样本均数比较:(未知时)2.配对计量资料比较N为对子数,为差值均数,Sd为差值标准差。多元线性回归分析分析多个变量之间的相互关联和相互依存的关系多元线性回归模型的矩阵形式: y=x+ ey 是因变量观察值构成的向量, x 是自变量观察值和常数项构成的矩阵,是未知参数构成的向量(待估计的偏回归系数向量),e 是因变量的残差构成的向量。多元线性回归分析:研究一个因变量与一组自变量的依存关系,即,研究一组自变量是如何直接影响一个因变量的。多元线性回归分析的基本原理:利用观察或收集到的因变量和自变量的一组数据建立一个因变量关于自变量的线性函数模型,并且,这个模型最好地拟和了观察数据。多元线性回归分析的方法步骤一、估计参数;二、检验参数;三、检验模型;四、模型诊断;五、解释模型参数的实际意义。估计参数(估计偏回归系数j)方法 -最小二乘法标准偏回归系数的估计同一模型中对参数的标准估计值进行大小比较,绝对值大的b j 对应的自变量 x j 对因变量 y 的影响大,或者说,与因变量 y 的关联性强。bj 表示了当其它自变量不变时,xj 改变一个单位所引起的 y 的改变量。复确定系数(multiple determinent coefficient):它表示了因变量 y 的总体变异中被所有自变量所解释的比例。多元线性回归分析的逐步回归法1.向前选择法 (forward selection);2. 向后消去法 (backward elimination);3. 逐步过程法 (stepwise procedure)决定模型好坏的常用指标有三个:检验总体模型的p-值,确定系数R2值和检验每一个回归系数bj 的p-值。多元相关分析相关分析 (correlation analysis):研究两个或多个变量之间关联性或关联程度的一种统计分析方法。相关系数 (correlation coefficient):描述变量之间的关联程度大小的常数,它介于 -1和 1之间,一般用来表示。多个变量之间关系三个基本方法:1.偏相关分析partial correlation analysis:判断其它因素不变的情况下,一个变量与另一个变量之间是否关联。2.复相关分析multiple correlation analysis:判断一个变量与另一组变量之间是否关联3.典型相关分析canonical correlation analysis:判断一组变量与另一组变量之间是否关联多元线性回归分析模型:Y=+1 X1 +2 X2 +3 X3+偏相关系数 (partial correlation coefficient):度量了当其它变量固定不变时,或者说在消除了其它变量的影响之后,两个变量之间线性关联的强度。多元相关分析和多元回归分析的异同点相同点是:讨论了变量之间的关联性。不同点是:多元回归分析给出了变量之间的依存关系,而多元相关分析没有给出依存关系;多元回归分析要求将变量分为自变量和因变量,而多元相关分析不要求将变量分为自变量和因变量;多元回归分析仅要求因变量服从正态分布,而多元相关分析要求所有变量服从正态分布。Logistic 回归分析研究因变量y取某个值的概率变量p与自变量x的依存关系。分类型因变量 (y) -Logistic 回归分析Logistic 回归分析的数学模型令y是1,0变量,x是一个危险因素。Logistic 回归模型的另外一种形式相对危险度relative risk:RR表示暴露在危险因素下的发病率与不暴露在危险因素下的发病率的比,其值表示暴露在危险因素下的发病率是不暴露在危险因素下的多少倍。比数比odds ratio:OR值表示暴露在危险因素下的发病率与不发病率之比与不暴露在危险因素下的发病率与不发病率之比的比。当发病率很低时,ORRR一元logistic回归模型系数的意义解释:(1) 如果x=1,0,则OR近似表示在x=1条件下的发病率与x=0条件下发病率之比,即暴露下的发病率与非暴露下的发病率之比 (相对危险度)。(2) 如果x是连续变量,则OR近似表示在x相邻两个单位上的相对危险度。(3) 如果x是分类变量,则要将x的哑变量放入模型,则OR表示两个类之间的相对危险度。Logistic回归分析和线性回归分析的异同点相同点:都可以利用模型来筛选危险因子;都可以校正混杂因子的影响;都可以用来做预测。不同点:前者对因变量无分布要求,后者要求因变量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准商铺租赁合同范本
- 烟台科技学院《体育社会组织建设与管理》2023-2024学年第一学期期末试卷
- 南京工业大学《轨道交通通信系统》2023-2024学年第二学期期末试卷
- 江西经济管理职业学院《波与成像》2023-2024学年第二学期期末试卷
- 2025塑料保护剂经销合同
- 吉利学院《Biochemistry》2023-2024学年第二学期期末试卷
- 2025至2031年中国大喷量实心锥喷嘴行业投资前景及策略咨询研究报告
- 2025花卉采购合同书范本
- 2025年室内排水、电线、网络等管道井专项劳务分包施工合同
- 老式住宅拆除方案范本
- 【公开课课件】《农业区位因素及其变化》
- 2024届清华大学强基计划数学学科笔试试题(附答案)
- (必会)军队文职(数学1)近年考试真题题库(含答案解析)
- 全国统一规范电子税务局概况介绍及操作辅导
- 工商企业管理毕业论文范文(4篇)
- 浙江省杭州市(2024年-2025年小学三年级语文)人教版开学考试(上学期)试卷(含答案)
- 【贸易战背景下华为公司危机应对措施及其启示18000字(论文)】
- 【网络谣言型寻衅滋事罪的认定存在的争议探析8600字(论文)】
- 2024延迟退休政策详解
- 水泥标准培训考核2024
- 图书馆运营管理服务投标方案(技术方案)
评论
0/150
提交评论