8层小高层一榀横向框架计算书.doc_第1页
8层小高层一榀横向框架计算书.doc_第2页
8层小高层一榀横向框架计算书.doc_第3页
8层小高层一榀横向框架计算书.doc_第4页
8层小高层一榀横向框架计算书.doc_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目 录1 工程概况12 结构布置及计算简图13 重力荷载计算43.1 屋面及楼面的永久荷载标准值43.2屋面及楼面可变荷载标准值43.3 梁、柱、墙、窗、门重力荷载计算53.4 重力荷载代表值64 框架侧移刚度计算74.1 横向框架侧移刚度计算75 横向水平荷载作用下框架结构的内力和侧移计算95.1 横向水平地震作用下框架结构的内力和侧移计算95.1.1 横向自振周期计算95.1.2 水平地震作用及楼层地震剪力计算95.1.3 水平地震作用下的位移验算115.1.4 水平地震作用下框架内力计算125.2 横向风荷载作用下框架内力和侧移计算145.2.1 风荷载标准值145.2.2 风荷载作用下的水平位移验算165.2.3 风荷载作用下框架结构内力计算176 竖向荷载作用下框架结构的内力计算196.1 横向框架内力计算196.1.1 计算单元196.1.2 荷载计算196.1.3 内力计算216.2 横向框架内力组合236.2.1 结构抗震等级236.2.2 框架梁内力组合236.2.3 框架梁柱内力组合287 截面设计367.1 框架梁367.1.1 梁的正截面受弯承载力计算367.1.2 梁斜截面受剪承载力计算377.2 框架柱387.2.1剪跨比和轴压比验算387.2.2 柱正截面承载力计算397.2.3 柱斜截面受剪承载力计算418 楼盖设计438.1双向板设计448.2单向板设计459 楼梯的设计469.1 踏步板计算479.1.1 荷载计算479.1.2 内力计算479.1.3截面承载力计算48 9.2楼梯斜梁计算489.2.1 荷载计算489.2.2 内力计算489.2.3 承载力计算489.3平台板计算499.3.1 承载力计算499.3.2 内力计算499.3.3承载力计算499.4 平台板设计509.4.1 荷载计算509.4.2 内力计算509.4.3 承载力计算5010基础设计5110.1 设计资料5110.2 确定基础埋深5110.3 确定基础类型及材料5110.4 a、b柱柱下独立基础设计5110.4.1 根据持力层地基承载力确定柱下基础截面尺寸5110.4.2计算基础沉降5310.4.3基础高度验算5510.4.4基础配筋计算5611框架核芯区截面抗震验算57致 谢59参 考 文 献60xxxxx大学毕业设计1 工程概况本工程为xxxx写字楼。总建筑面积控制在左右,层高为,基本风压为,基本雪压为,建设场地的地震基本烈度为7度,建筑抗震类别为丙类,地面粗糙度为b类。建筑结构的安全等级为三级,设计使用年限为50年。2 结构布置及计算简图根据房屋的使用功能及建筑设计的要求,进行了建筑平面、立面及剖面设计,其结构布置简图如图1所示。门为木门和钢门,门洞尺寸、。窗为铝合金窗,洞口尺寸为、。楼盖及屋盖均采用现浇钢筋混凝土结构,楼板厚取。梁截面高度按梁跨度的估算。由此估算的梁截面尺寸见表1。表中还给出了各层梁、柱和板的混凝土强度等级。其设计强度:表1 梁截面尺寸(mm)及各层混凝土强度等级层数混凝土强度等级横梁()纵梁()次梁()ab跨,cd跨bc跨1-7c358c35框架为二级抗震等级,由建筑抗震设计规范知,轴压比限值近似;单位负荷面积上的重力荷载代表值近似取,混凝土强度等级。边柱: acn/nfc=1.3(7.23.45) 128103/(0.7516.7)=247508 mm2中柱: acn/nfc=1.25(7.24.95) 128103 /(0.7516.7)=341461 mm2 n=fgen柱的截面为正方形则边柱和中柱截面高度分别为498mm和584mm.经综合分析,本工程各层柱的截面尺寸和混凝土强度等级见表2 表2:各柱的截面尺寸 层次截面尺寸(bh)混凝土强度18 600mm600mm c35 根据地质条件及层数等的条件,基础选用柱下独立基础,基础埋深取2.2m,取顶层柱的形心线作为框架柱的轴线,一层柱高. 图1 框架结构计算简图-60-图2 结构平面布置简图3 重力荷载计算3.1 屋面及楼面的永久荷载标准值屋面(上人)40厚细石混凝土保护层 220.04=0.880 sbs(3+3)改性沥青防水卷材防水层 0.400 20厚1:3水泥砂浆找平层 200.02=0.40 100厚1:8膨胀珍珠岩板 140.1= 1.401/211.80.18隔汽层 =1.062 100厚现浇钢筋混凝土板 250.10=2.5 10厚水泥石灰膏砂浆打底 170.010 =0.17合计: 6.812 1-8层楼面:瓷砖地面(包括水泥粗砂打底) 100mm厚钢筋混凝土板 v型轻钢龙骨吊顶: 合计: 3.2屋面及楼面可变荷载标准值上人屋面均布活荷载标准值 楼面活荷载标准值 屋面雪荷载标准值 (式中为屋面积雪分布系数,取)屋面活荷载与雪荷载不同时考虑,两者取大者。3.3 梁、柱、墙、窗、门重力荷载计算 梁、柱可根据截面尺寸,材料容重及粉刷等计算长度上的重力荷载:对墙、窗、门等可计算单位面积上的重力荷载。外墙:20厚石灰砂浆内墙 170.02=0.34 100厚苯板保温层 0.1 300厚加气混凝土砌块 60.3=1.8 水泥粉刷墙面(包括砂浆打底共20mm) 0.0220=0.4 合计: 2.60 内墙:双侧20厚石灰砂浆罩面 0.02172=0.68 200厚加气混凝土砌块 60.2=1.20 合计: 1.88 门窗: 木门: 0.2 铝合金门: 0.4 塑钢窗: 0.45 外墙体为厚蒸压粉煤灰砌块,外贴厚苯板保温(合计),其外墙内外墙面为抹灰墙面,则外墙单位墙面重力荷载:。内墙为厚蒸压粉煤灰砌块,两侧均为水泥粉刷墙面,则内墙单位墙面重力荷载为:;木门单位面积重力荷载为,塑钢窗单位面积重力荷载为。主体构造柱尺寸为,构造柱均有厚的混合砂浆抹灰层,则构造柱的单位面积重力荷载为: 。表3 梁、柱重力荷载标准值层次构件1边横梁0.300.60254.7256.312357.21756.10中横梁0.300.60254.7252.4668.04次梁0.250.50253.28136.99203.77纵梁0.300.60254.7257.24136.08柱0.600.60259.905.25241247.4028边横梁0.300.60254.7256.312357.21756.10中横梁0.300.60254.7252.4668.04次梁0.250.50253.28136.99203.77纵梁0.300.60254.7257.24136.08柱0.600.60259.94.224977.82 注:g表示单位长度构件重力荷载;n为构件数量,梁长度取净长,一层柱取从基础顶面至一层顶板,其它柱长度取层高。3.4 重力荷载代表值集中于各楼层标高处的重力荷载代表值为计算单元范围内各层楼面上的重力荷载代表值及上下各半层的墙、柱等重量,计算时,各可变荷载的组合值按规定采用,屋面上的可变荷载取雪荷载。计算结果见图3。 图3 各质点的重力荷载代表值4 框架侧移刚度计算4.1 横向框架侧移刚度计算横向框架侧移刚度计算方法如下,横梁线刚度计算过程见表3,柱线刚度计算过程见表4。表4 横梁线刚度计算表类别层次ecbh(mm)i0ec i0/l1.5eci0/l2 ec i0/l边横梁183.151043006005.410969002.46510103.67910104.931010过道梁183.151043006005.410930005.6710108.505101011.341010柱的侧移刚度d值按下式计算(为柱的侧移刚度修正系数),根据梁、柱线刚度比的不同,柱分为中框架中柱和边柱,边框架柱中柱和边柱以及楼梯间柱等。表5 柱线刚度计算表类 别层次 ecbh柱 154003.151046006002.010106.31010 2842003.151046006001.0810108.11010 现以2层b-6柱的侧移刚度计算为例,说明计算过程,其余柱的计算过程从略,计算结果分别见表5-7。第2层梁柱线刚度比为:,计算得.表6 中框架柱侧移刚度d值(n/mm)层次边柱(8根)中柱(7根)280.6090.2331027102.009 0.50119324329595310.7830.461956152.5830.673122137217752 表7 边框架柱侧移刚度d值(n/mm)层次 a-1 , a-12 c-1 , c-12280.4570.186204981.5070.430473886788610.5870.420217781.9370.6193209653874 表8 楼、电梯间柱侧移刚度d值(n/mm)层次 d-1 , d-12 c-9 f-1 ,f-12281.0040.334368081.5350.434239140.3040.132145477526910.2910.544282071.9730.623161520.3910.373684451203将上述不同情况下同层框架柱侧移刚度相加,即得框架各层层间侧移刚度见表9。表9 横向框架层间侧移刚度d值(n/mm)层次12345678332829 360907360907360907360907360907360907 360907由表9可见,故该框架为规则框架。故该框架为规则框架。5 横向水平荷载作用下框架结构的内力和侧移计算5.1 横向水平地震作用下框架结构的内力和侧移计算5.1.1 横向自振周期计算结构顶点的假想侧移由式,计算。计算过程见表10,其中第8层的为与之和。按式计算基本周期,其中的量纲为m,取,则 本工程的场地类别为类,设计地震分组为第一组,故查表可知特征周期.其中,.表10 结构顶点的假想侧移计算层次88005.508005.503609072278175601.9013607.403609073869165601.9019209.303609075360155601.9024811.203609076951145601.9030413.10360907844423 5601.9036015.0036090710035825601.9041616.9036090711525816049.4947666.403328291431435.1.2 水平地震作用及楼层地震剪力计算因为本设计方案中结构高度不超过40m,质量和刚度沿高度分布比较均匀,变形以剪切变形型为主,故可用底部剪力法计算水平地震作用。结构总水平地震作用标准值按式: 因,所以应考虑顶部附加水平地震作用。顶部附加地震作用系数,则 ,各质点的水平地震作用可按下式计算,具体计算过程见表11,各楼层地震作用剪力按式计算,计算结果见表11。表11 各质点横向水平地震作用及楼层地震剪力计算表层次37.81518.5157399.680.05871.171.1834.86284.22278591.400.282345.9417.0730.65601.90171418.140.174213.4630.4626.45601.90147890.160.150184.0814.4522.25601.90124362.180.126154.5968.9418.05601.90100834.200.102125.11094.0313.85601.9077306.220.07895.71189.729.605601.9053778.240.05668.71258.415.406049.4932667.250.03340.51298.9各质点水平地震作用及楼层地震剪力沿房屋高度的分布见图4。 (a)水平地震作用分布 (b)层间剪力分布 图4 横向水平地震作用及楼层地震剪力5.1.3 水平地震作用下的位移验算水平地震作用下框架结构的曾见位移和顶点位移分别按式和计算,计算过程见表12.表中还计算了各层的层间弹性位移角。表12 横向水平地震作用下的位移验算层 次di/nmm-184173609071.1621.5642001/36367630.43609071.7520.4142001/23816814.43609072.2618.6642001/18625968.93609072.6916.4042001/1564410943609073.0313.7242001/138631189.73609073.3010.6942001/127621258.43609073.497.3942001/120511298.93328293.903.9054001/1383由表12可知,最大层间弹性位移角发生在第二层,其值为,满足的要求,其中查规范可知=1/550。5.1.4 水平地震作用下框架内力计算以平面图中号轴线横向框架内力计算为例,说明计算方法,其余框架内力计算从略。框架柱端剪力及弯矩分别按式和计算,其中取自表5,取自表8,层间剪力取自表12。各柱反弯点高度比y按式计算其中可以查表得出。本案中底层柱需考虑修正值,第二层需考虑修正值和,其余柱均无修正。具体计算过程及结果见表13。表13 各层柱端弯矩及剪力计算表13a:中柱柱端弯矩及剪力计算 层次/m/kn中柱y84.241736090727606.1431.900.5010.2533.50100.4974.2630.436090727606.1448.220.5010.3570.88131.6564.2814.436090727606.1462.300.5010.40104.66157.0054.2968.936090727606.1474.110.5010.45140.07171.1944.21094.936090727606.1483.750.5010.45158.29193.463 4.21189.736090727606.1491.000.5010.45171.99210.212 4.21258.436090727606.1496.260.5010.68274.92129.371 5.41298.933282917448.1499.360.6730.70375.58125.19注表13:表中m量纲为knm,v量纲为kn。表13b:边柱柱端弯矩及剪力计算 层次/m/kn边柱y84.241736090712838.7514.830.233-0.07-4.3666.6574.2630.436090712838.7522.430.2330.1816.9677.2564.2814.436090712838.7528.970.2330.2732.8588.8254.2968.936090712838.7534.470.2330.3246.33132.3244.21094.936090712838.7538.920.2330.4065.39164.783 4.21189.736090712838.7542.320.2330.4579.99184.782 4.21258.436090712838.7544.770.2330.5399.6688.381 5.41298.933282911951.8646.210.4610.88219.5923.29梁端弯矩、剪力及柱轴力分别按、和计算,其中梁线刚度取自表3,具体的计算过程及结果见表14。表14 梁端弯矩、剪力及柱轴力计算层次边梁走道梁柱轴力边柱n中柱n866.6530.456.912.5470.0470.043.046.93-14.07-32.86772.8950.04 6.917.82115.11115.113.076.74-31.89-91.786110.1069.056.925.96158.83158.833.0105.89-57.85-171.715165.1783.596.936.05191.86191.863.0127.91-93.90-263.574197.71101.066.943.30232.47232.473.0154.98-137.20-375.253250.17111.666.952.44256.85256.853.0171.23-189.64-494.042284.0491.326.954.40210.05210.053.0140.03-244.04-579.671122.95121.246.935.39278.88278.883.0185.92-279.43-730.20注: 1)柱轴力中负号表拉力。左风时,左两柱为拉力,则右两柱为压力;2)表中m,v,n,l量纲分别为knm,kn,kn,m。水平地震作用下,框架的弯矩图,梁端剪力图,轴力图如图5所示。 (a)框架弯矩图(knm) (b)梁端剪力及柱轴力图(kn)图5 左地震作用下框架弯矩图、梁端剪力及柱轴力图5.2 横向风荷载作用下框架内力和侧移计算5.2.1 风荷载标准值风荷载标准值按式计算,基本风压, b类场地,由荷载规范查的(迎风面)和(背风面),。则查询可知脉动影响系数,已计算得出结构的基本自振周期为,故 ,查表可得,风振系数按式计算。 仍取图2中的第号轴的横向框架,其负载宽度为7.2m。沿房屋高度的分布风荷载标准值:。 根据各楼层标高处的高度由表查取,代入上式可得各楼层标高处的q(z)。见表15;q(z)沿高度的分布见图6(a)。表15 沿房屋高度分布风荷载标准值层次/m/ knm-1/ knm-1834.81.001.491.4224.8823.051730.60.881.431.3874.5702.856626.40.761.361.3514.2332.646522.20.641.291.3123.9002.4384180.521.211.2703.5412.213313.80.401.111.2273.1381.96129.60.281.001.1762.7101.69415.40.161.001.1012.5371.586荷载规范规定,对于高度大于30m且高宽比大于1.5的房屋结构,应采用风振系数来考虑风压脉动的影响,由于在本设计中房屋高度,且,由表15可见,沿房屋高度在1.1.011.422范围内变化,即风压脉动的影响较大,因此该房屋应考虑风压脉动的影响。框架结构分析时,应按静力等效原理将图6(a)的分析风荷载转化为节点集中荷载如图6(b)所示,取第6层的集中荷载的计算过程如下: . (a)风荷载沿房屋高度的分布(kn/m) (b)等效节点集中风荷载(kn)图6 框架上的风荷载5.2.2 风荷载作用下的水平位移验算根据图6(b)所示的水平荷载由式计算层间剪力,然后依据表9求出轴线框架的层间侧移刚度,再按式和计算各层的相对侧移和绝对侧移。计算过程见表16。表16 风荷载作用下框架层间剪力及侧移计算层次1234567824.0018.7921.3924.1226.5928.9030.5617.63191.98167.98149.19127.80103.6877.0948.2017.6358800808898088980889808898088980889808893.2652.0761.8441.5801.28209530.5960.2183.2655.3417.1858.76510.04711.00011.59611.8141/16531/20231/22781/26581/32761/44071/70471/9266由表16可见,风荷载作用下框架的最大层间位移角为1/1653,远小于1/550,满足规范要求。5.2.3 风荷载作用下框架结构内力计算风荷载作用下框架结构内力计算过程与水平地震作用下的相同,仍以第号轴线横向框架内力计算为例,具体计算过程及结果见表17。横向风荷载作用下的弯矩图、梁端剪力图及轴力图如图7所示。表17(a) 风荷载作用下边柱柱端弯矩及剪力计算层次/m/kn边柱y84.217.638088912838.752.7980.233-0.07-0.82312.57474.248.198088912838.757.6490.2330.185.78326.34364.277.098088912838.7512.2360.2330.2713.87637.51654.2103.688088912838.7516.4560.2330.3222.11746.99844.2127.808088912838.7520.2850.2330.4034.07951.11834.2149.198088912838.7523.6800.2330.4544.75654.70124.2167.988088912838.7526.6620.2330.5359.35052.63115.4191.985880011951.8639.0220.4610.88185.43325.286 表17(b) 风荷载作用下中柱柱端弯矩及剪力计算层次/m/kn中柱y84.217.638088927606.146.0170.5010.256.31818.95474.248.198088927606.1416.4470.5010.3524.177 44.90064.277.098088927606.1423.3100.5010.4039.16158.74154.2103.688088927606.1435.3840.5010.4566.87681.23744.2127.808088927606.1443.6160.5010.4582.434100.75334.2149.198088927606.1450.9160.5010.4596.231117.61624.2167.988088927606.1457.3290.5010.68163.73277.05015.4191.985880017448.1465.6200.6730.70248.044106.30 梁端弯矩、剪力及柱轴力分别按、和计算,其中梁线刚度取自表3,具体的计算过程及结果见表18。表18 风荷载作用下梁端弯矩,剪力及轴力计算层次边梁走道梁柱轴力(m)(m)边柱中柱812.575.636.92.6413.1713.173.08.78-264-6.14725.5215.526.95.9535.6035.603.023.73-8.59-23.92643.3025.126.99.9257.6357.633.038.42-18.51-52.42560.8736.626.914.1384.0284.023.056.01-32.64-94.30473.2450.796.917.98116.50116.503.077.67-50.62-153.99388.7860.626.921.65139.04139.043.092.69-72.27-225.03297.3952.506.921.72120.43120.433.080.29-93.99-283.60184.6481.826.924.13187.67187.673.0125.11-118.12-384.58注: 1)柱轴力中负号表拉力。左风时,左两柱为拉力,则右两柱为压力;2)表中m,v,n量纲分别为knm,kn,kn。 (a)框架弯矩图(knm) (b)梁端剪力及柱轴力图(kn)图7 左风作用下框架弯矩图、梁端剪力及柱轴力图6 竖向荷载作用下框架结构的内力计算6.1 横向框架内力计算6.1.1 计算单元取第号轴线横向框架进行计算,计算单元宽度为,如图8所示。由于房间内布置有次梁,故直接传给该框架的楼面荷载如图中的水平阴影线所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各节点上。由于向框架梁的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。 图8 横向框架计算单元6.1.2 荷载计算6.1.2.1 恒荷计算在图9中,和代表横梁自重,为均布荷载形式。对于第6层,。和分别为房间和走道板传给横梁的梯形荷载和三角形荷载,由图8所示几何关系可得:,。图9 各层梁上作用的恒载、分别为由边纵梁、中纵梁直接传给柱的恒载,它包括梁自重、楼板重和女儿墙等的重力荷载,计算如下:集中力矩:对于1-7层,包括梁自重和其上的横墙自重,为均布荷载,其它各层荷载计算方法同第8层,结果为: 集中力矩:6.1.2.1 活荷载计算图10 各层梁上作用的活载对于第8层 同理,在屋面雪荷载作用下 对1-7层 将以上计算结果汇总,见表19及表20。表19 横向框架恒荷载汇总表层次knm-1knm-1knm-1knm-1knknknmknm84.7254.72524.52320.436215.31225.0832.3033.761720.1334.72511.889.90167.02215.2625.0532.29 表20 横向框架活荷载汇总表层次 /knm-1/knm-1/kn/kn/knm/knm87.2(1.44)6.0(1.2)25.92(5.18)43.92(8.78)3.89(0.78)6.59(1.32)177.26.025.9243.923.896.59注:表中括号内数值对应于屋面雪荷载作用情况。6.1.3 内力计算梁端、柱端弯矩采用弯矩二次分配法计算。由于结构和荷载均对称,故可取一半框架进行计算。弯矩计算过程如图11,所得弯矩如图12。计算结果,见表21和表22.表21 恒荷载作用下梁端剪力及柱轴力层次荷载引起的剪力弯矩引起的剪力总 剪 力柱 轴 力ab跨bc跨ab跨bc跨ab跨bc跨a柱b柱n顶n底n顶n底878.8422.42-2.88075.9681.7222.42291.27332.85329.22370.80799.7514.51-0.74099.01100.4914.51598.88640.46701.06742.64699.7514.51-0.87098.88100.6214.51906.36947.941073.031114.61599.7514.51-0.87098.88100.6214.511213.841255.421445.001486.58499.7514.51-0.87098.88100.6214.511521.321562.901816.971858.55399.7514.51-0.87098.88100.6214.511828.801870.382188.942230.52299.7514.51-0.85098.88100.6014.512136.262177.842560.892602.47199.7514.51-1.36098.39101.1114.512443.252496.712933.352986.81表22 活荷载作用下梁端剪力及柱轴力层 次荷载引起的剪力弯矩引起的剪力总剪力柱轴力ab跨bc跨ab跨bc跨ab跨bc跨a柱b柱n顶=n底n顶=n底821.91(7.34)4.5(0.9)-1.82(0.65)021.91(7.34)23.73(6.69)4.5(0.9)46.0(13.2)72.2(16.4)721.914.5-0.33(-0.55)021.58(7.34)22.24(22.46)4.593.5(60.5)21.9(7.3)621.914.5-0.16021.7522.074.5141.2(108.1)213.3(157.7)521.914.5-0.16021.7522.074.5188.9(155.8)283.8(228.2)421.914.5-0.16021.7522.074.5236.5(203.5)354.3(298.7)321.914.5-0.16022.0722.074.5284.2(251.1)424.8(369.2)221.914.5-0.13021.6822.144.5331.8(298.7)495.3(439.8)121.914.5-0.36021.5522.274.5379.3(346.2)566.0(510.3)注:表中括号内数值为屋面雪荷载作用,其它楼面活荷载作用下对应的内力,v以向上为正。6.2 横向框架内力组合6.2.1 结构抗震等级结构的抗震等级可根据结构类型、地震烈度、房屋高度等因素确定,故可得出本工程框架抗震等级为二级。6.2.2 框架梁内力组合本设计考虑了四种组合, ,及。此外本设计,这种内力组合与考虑地震作用的组合相比一般较小,对结构设计不起控制作用,故不予考虑。各层梁的内力组合结构果见表23,表中,两列中的梁端弯矩为经过调幅后的弯矩(调幅系数取0.8)。 (a)恒荷载作用下 (b)活荷载作用下图11 横向框架弯矩的二次分配法(m单位knm) (a)恒荷载作用下 (b) 活荷载(屋面雪荷载)作用下图12 竖向荷载作用下框架弯矩图(单位:knm) 图13 均布荷载和梯形荷载下 图14 均布荷载和三角形形荷载下 的计算简图 的计算简图以第一层ab跨梁考虑地震荷载作用的组合为例,说明各内力的组合方法。对支座负弯矩按相应的组合情况进行计算,求跨间的最大正弯矩时,可根据梁端弯矩组合值及梁上荷载设计值,由平衡条件确定,由图13可得:若,说明,其中为最大正弯矩截面至a支座的距离,则可由下式求解:将求得的值代入下式即可得跨间最大正弯矩值:若,说明,则:若,则 同理,可求得三角形分布荷载和均匀荷载作用下的和的计算公式(图14)。由下式解得:对于1层,梁上荷载设计值 左边地震时:又有:故,解得:所以,发生在距a支座1.36m处。 右边地震时:,则,说明发生在距左支座3.54m处。剪力计算: ab净跨 左地震时:=- = 右地震时: 则: ,6.2.3 框架梁柱内力组合取每层柱顶和柱底两个控制截面,组合结果见表23表26。注意,在考虑地震作用效应的组合中,取屋面为雪荷载时的内力进行组合;并且对于二级抗震等级的框架柱,应当采用考虑水平地震作用组合所得的设计值。表23 框架梁内力组合层次截面位置内力一am-86.02-17.6584.64122.95-56.84-199.0334.52-205.24-133.78-127.93142.99v98.392

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论